K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi M và M’ tương ứng là trung điểm của AC và A’C’, ta có:

I ∈ BM, G ∈ C′M, K ∈ B′M′

Theo tính chất trọng tâm của tam giác ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có :

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác IG và IK ⊂ (IGK) nên (IGK) // (BB′C′C)

b) Gọi E và F tương ứng là trung điểm của BC và B’C’, O là trung điểm của A’C. A, I, E thẳng hàng nên (AIB’) chính là (AEB’). A’, G, C thẳng hàng nên (A’GK) chính là (A’CF).

Ta có B′E // CF (do B’FCE là hình bình hành ) và AE // A′F nên (AIB′) // (A′GK).

12 tháng 1 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) CC′ // BB′ ⇒ ΔICC′ ∼ ΔIBB′

Giải sách bài tập Toán 11 | Giải sbt Toán 11

CC′ // AA′ ⇒ ΔJCC′ ∼ ΔJAA′

Giải sách bài tập Toán 11 | Giải sbt Toán 11

AA′ // BB′ ⇒ ΔKAA′ ∼ ΔKBB′

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Gọi H và H’ lần lượt là trung điểm của các cạnh BC và B’C’. Vì HH’ là đường trung bình của hình thang BB’CC’ nên HH′ // BB′.

Mà BB′ // AA′ suy ra HH′ // AA′

Ta có: G ∈ AH và G′ ∈ A′H′ và ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) AH′ ∩ GG′ = M ⇒ GG′ = G′M + MG

Ta có: G′M // AA′ ⇒ ΔH′G′M ∼ ΔH′A′A

Giải sách bài tập Toán 11 | Giải sbt Toán 11

MG // HH′ ⇒ ΔAMG ∼ ΔAH′H

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác HH’ là đường trung bình của hình thang BB’CC’ nên

Giải sách bài tập Toán 11 | Giải sbt Toán 11

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

31 tháng 3 2017

a) OO' là đường trung bình của tam giác DBF nên OO' // DF.
DF nằm trong mặt phẳng (ADF) nên OO' // mp(ADF).
Tương tự OO' // CE mà CE nằm trong mặt phẳng (BCE) nên OO' // mp(BCE).

b) Gọi J là trung điểm đoạn thẳng AB, theo định lí Ta-lét \(\Rightarrow\) MN // DE => đpcm.

16 tháng 12 2019

a) Do các tứ giác ABCD và ABEF là các hình bình hành

=> O là trung điểm của AC và BD

và O’ là trung điểm của AE và BF. (tính chất hình bình hành).

Giải bài tập Đại số 11 | Để học tốt Toán 11

+ ΔBFD có OO’ là đường trung bình nên OO’ // DF

mà DF ⊂ (ADF)

⇒ OO' // (ADF)

+ ΔAEC có OO’ là đường trung bình nên OO’ // EC

mà EC ⊂ (BCE)

⇒ OO’ // (BCE).

b)

Giải bài tập Đại số 11 | Để học tốt Toán 11

Ta thấy mp(CEF) chính là mp(CEFD).

Gọi I là trung điểm của AB:

+ M là trọng tâm ΔABD

⇒ IM/ ID = 1/3.

+ N là trọng tâm ΔABE

⇒ IN/IE = 1/3.

+ ΔIDE có IM/ID = IN/IE = 1/3

⇒ MN // DE mà ED ⊂ (CEFD)

nên MN // (CEFD) hay MN // (CEF).

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Ta có: ABB'A' là hình bình hành, M, N là trung điểm của AA', BB' nên MN // AB (đường trung bình) suy ra MN // (ABC).

Tương tự, ta có NP // BC suy ra NP// (ABC).

Mặt phẳng (MNP) chứa hai đường thẳng cắt nhau MN, NP và MN, NP song song với mp(ABC) suy ra (MNP//(ABC).

15 tháng 11 2023

loading...

loading...