Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số lẻ có 2 chữ số giống nhau là:
11 , 33 , 55 , 77 , 99 .
Ta thấy mỗi số hơn kém nhau 22 đơn vị (33-11=22.......)
Số lượng số hạng là:
(99-11):22+1=5(số)
Tống của tất cả các số lẻ có 2 chữ số giống nhau là :
(99+11)x5:2=275
Tổng của tất cả các số lẻ có 2 chữ số giống nhau được gấp lên 9 lần là :
275x9=2475
Bài 1:
Chứng minh \(4mn(m^2-n^2)\vdots 8\)
+ Nếu \(m,n\) khác tính chẵn lẻ thì suy ra tồn tại một số chẵn và một số lẻ, do đó \(mn\vdots 2\Rightarrow 4mn(m^2-n^2)\vdots 8\)
+ Nếu \(m,n\) cùng tính chẵn lẻ thì \(m^2-n^2\vdots 2\Rightarrow 4mn(m^2-n^2)\vdots 8\)
Như vậy, \(4mn(m^2-n^2)\vdots 8\) \((1)\)
Chứng minh \(4mn(m^2-n^2)\vdots 3\)
+ Nếu tồn tại một trong hai số $m,n$ chia hết cho $3$ thì \(4mn(m^2-n^2)\vdots 3\)
+ Nếu cả hai số $m,n$ đều không chia hết cho $3$
Ta biết rằng một số chính phương chia 3 thì chỉ có thể có dư là $0$ hoặc $1$. Mà \(m,n\not\vdots 3\Rightarrow m^2\equiv n^2\equiv 1\pmod 3\Rightarrow m^2-n^2\vdots 3\)
\(\Rightarrow 4mn(m^2-n^2)\vdots 3\)
Như vậy, \(4mn(m^2-n^2)\vdots 3(2)\)
Từ \((1),(2)\) và $3,8$ nguyên tố cùng nhau nên \(4mn(m^2-n^2)\vdots 24\)
Ta có đpcm.
Nếu lấy \(\sqrt{3}\) bằng \(1,73\) thì vì \(1,73< \sqrt{3}=1,7320508...< 1,74\) nên ta có \(\left|\sqrt{3}-1,73\right|< \left|1,73-1,74\right|=0,01\)
Vậy sai số tuyệt đối trong trường hợp này không vượt quá \(0,001\)
Nếu lấy \(\sqrt{3}\) bằng \(1,7321\) thì sai số tuyệt đối không vượt quá 0,0001
a:
TH1: Trong 4 số có số 0
=>Số cách là: \(C^3_9\cdot3\cdot3\cdot2\cdot1=1512\left(cách\right)\)
TH2: ko có số 0
=>Số cách là: \(A^4_9=3024\left(cách\right)\)
=>Có 1512+3024=4536 cách
b: TH1: Có số 0
=>Có \(C^3_7\cdot5\cdot5\cdot4\cdot3\cdot2\cdot1=21000\left(cách\right)\)
TH2: ko có số 0
=>Có \(C^4_7\cdot6!=25200\left(cách\right)\)
=>Có 46200 cách