Từ các chữ số 0; 1; 2; 3; 4 có thể lập được bao nhiêu số: Có 9 ch
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

Xếp số vào 9 ô trống thỏa yêu cầu đề bài:

Bước 1: Chọn 2 ô trong 8 ô (bỏ ô đầu tiên) để xếp hai chữ số 0, có  cách chọn.

Bước 2: Chọn 3 ô trong 7 ô còn lại để xếp ba chữ số 2, có  cách.

Bước 3: Chọn 2 ô trống trong 4 ô còn lại để xếp 2 chữ số 3, có  cách chọn.

Bước 4: Hai ô còn lại xếp 2 chữ số còn lại, có 2! Cách xếp.

Theo quy tắc nhân có: 

 số thỏa yêu cầu bài toán.

Chọn  B.

19 tháng 10 2016

3*4*4*4*4*4=3072 9 số

b)2*4*4*4*4*4=2048 số

20 tháng 10 2016

gọi số cần tìm là abcdef (a#0 ; a;b;c;d;e;f € A ; f chẵn )

f có 3 cách chọn

a có 5 cách chọn lọc

b;c;d;e đều có 6 cách chọn

 

=> có 3*5*6*6*6*6 = 19440 số thỏa mãn yêu cầu bài toán

b) gọi số cần tìm là abcdef (a#0;f=0,5 ; a;b;c;d;e;f € A )

f=0,5 => f có 2 cách chọn

a có 5 cách chọn

b;c;d;e đều có 6 cách chọn

=> có 2*5*6*6*6*6 = 12960

16 tháng 10 2016

1. số tự nhiên có dạng abce ( nhớ gạch trê đầu ( vì đây là số tự nhiên))

*  ta có h là :

        h= mn 

           trong đó tập hợp mn là {0,1}

               => có 2 trường hợp xảy ra 

                (m,n)=(1,0) hoặc (0,1)

*  ta có số tự nhiên abhe có tập hợp {h,2,3,4,5,6,7,8,9}

    a có 9 cách chọn 

b có 8 cách chọn 

c có 7 cách chọn 

e có 6 cách chọn 

vậy có 9*8*7*6=3024 số

 *ta  phải loại trường hợp h  đứng đầu và có dạng 01

 trường hợp h  đứng đầu và có dạng 01 có số cách chọn là :

a có 1 cách chọn  là h

b có 8 cách 

c có 7 cách 

e có 6 cách 

=>  có 1*8*7*6=336 số 

 vậy số tự nhiên theo yêu cầu đề bài có tổng cộng

3024 - 332688 số 

0 chắc

 

 

 

9 tháng 11 2021

Số tự nhiên thỏa mãn có dạng   với a,b,c,d ∈ A  và đôi một khác nhau.

TH1: d=0

Có 5 cách chọn a; 4 cách chọn b và 3 cách chọn c nên theo quy tắc nhân có  5.4.3 = 60 số.

TH2: d ≠ 0 ; d có 2 cách chọn là 2, 4

Khi đó có 4 cách chọn a( vì a khác 0 và khác d); có 4 cách chọn b và 3 cách chọn c.

Theo quy tắc nhân có: 2.4.4.3=96 số

Vậy có tất cả: 96 + 60 = 156 số.

24 tháng 4 2016

Số tam giác là \(C_{2n}^3\). Một đa giác đều 2n đỉnh thì có n đường chéo xuyên tâm. Cứ 2 đường chéo xuyên tâm thì có một hình chữ nhật theo yêu cầu. Vậy số hình chữ nhật là \(C_n^2\).

Theo bài ta có phương trình :

\(C_{2n}^3=20C_n^2,\left(n\ge2\right)\)

\(\Leftrightarrow\frac{\left(2n\right)!}{\left(2n-3\right)!3!}=20\frac{n!}{\left(n-2\right)!2!}\)

\(\Leftrightarrow\frac{\left(2n-2\right)\left(2n-1\right)2n}{3}=20\left(n-1\right)n\)

\(\Leftrightarrow2\left(n-1\right)\left(2n-1\right)2n=60\left(n-1\right)n\)

\(\Leftrightarrow2n-1=15\), (do \(n\ge2\))

\(\Leftrightarrow n=18\)

Vậy đa giác đều có 16 cạnh, (thập lục giác đều)

30 tháng 7 2016

Ta có 5 cách chọn hàng chục và bốn cách chọn hàng đơn vị nên ta có 4*5=20 số

30 tháng 7 2016

chỉnh hượp chập hai của 5

 

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

1 tháng 4 2017

a) () // (ABCD) => {A_{1}{B_{1}}^{}}^{} // AB => {B_{1}}^{} là trung điểm của SB. Chứng minh tương tự với các điểm còn lại

b) Áp dụng định lí Ta-lét trong không gian:
\(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}\).
Do \(A_1A_2=A_2A\) nên : \(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}=1\).
Nên \(B_1B_2=B_2B;C_1C_2=CC_2=D_1D_2=D_2D\).

c) Có hai hình chóp cụt: ABCD.{A_{1}{B_{1}{C_{1}{D_{1}; ABCD.{A_{2}{B_{2}{C_{2}{D_{2}}^{}}^{}}^{}}^{}}^{}}^{}}^{}}^{}