K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

A B C O K P Q E M N

a) Vì AB là tiếp tuyến (O)

=> AB⊥OB

=> \(\widehat{ABO}\)\(=90^0\)

Vì AC là tiếp tuyến (O)

=> AC⊥OC

=>\(\widehat{ACO}\) \(=90^0\)

Ta có: \(\widehat{ABO}+\widehat{ACO}\) \(=90^0+90^0=180^0\)

=> Tứ giác ABOC nội tiếp đường tròn. (theo dấu hiệu nhận biết tứ giác nội tiếp)

b) Vì tiếp tuyến AB cắt tiếp tuyến AC tại A

\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\BO=CO\end{matrix}\right.\)

\(\Rightarrow\) AO là đường trung trực ứng BC

\(\Rightarrow\) AO⊥BC ( mà E∈BC)

\(\Rightarrow\) BE⊥AO (đpcm)

Xét ΔABO có: \(\widehat{ABO}\) \(=90^0\) (cmtrn)

BE⊥AO (cmtrn)

\(\Rightarrow\) Áp dụng hệ thức lượng trong tam giác vuông.

\(\Rightarrow\) \(AO\cdot OE=OB^2\) (mà OB=R)

\(\Rightarrow OA\cdot OE=R^2\) (đpcm)

c) Vì tiếp tuyến BP cắt tiếp tuyến PK tại P

\(\Rightarrow PB=PK\)

Vì tiếp tuyến KQ cắt tiếp tuyến QC tại Q

\(\Rightarrow KQ=QC\)

Ta có: \(P_{APQ}=AP+PQ+AQ\) \(=AP+PK+KQ+AQ\)

\(\Leftrightarrow P_{APQ}=\left(AP+PB\right)+\left(QC+AQ\right)\)

\(\Leftrightarrow P_{APQ}=AB+AC\)

\(AB+AC\) không thay đổi khi K chuyển động trên cung nhỏ BC

\(\Rightarrow\) Chu vi tam giác AQP không thay đổi khi K thay đổi trên cung nhỏ BC (đpcm).

d) Tự CM: \(\Delta MOP\sim\Delta NQO\)

\(\Rightarrow\frac{MP}{NO}=\frac{MO}{NQ}\) \(\Leftrightarrow MP\cdot NQ=MO\cdot NO=\frac{MN}{2}\cdot\frac{MN}{2}\)

\(\Leftrightarrow MP\cdot NQ=\frac{MN^2}{4}\)

\(\Leftrightarrow MN^2=4\cdot\left(MP\cdot NQ\right)\)

\(\Leftrightarrow MN=2\cdot\sqrt{MN\cdot NQ}\)

Áp dụng bđt Côshi ta có:

\(2\cdot\sqrt{MP\cdot NQ}\le MP+NQ\)

\(\Leftrightarrow MN\le MP+NQ\) (đpcm).

5 tháng 3 2020

c) Xét ΔMAN có : \(\left\{{}\begin{matrix}AO\perp MN\\MO=NO=R\end{matrix}\right.\)

\(\Rightarrow\) Tam giác MAN cân tại A

\(\Rightarrow\) \(\widehat{M}=\widehat{N}\)

\(\Rightarrow\) \(\widehat{MAN}+2\widehat{M}\)\(=180^0\) (!)

Vì tiếp tuyến OB cắt tiếp tuyến OK tại P

\(\Rightarrow\) OP là phân giác \(\widehat{BOK}\)

\(\Rightarrow\) \(\widehat{BOP}=\widehat{POK}\)

Vì tiếp tuyến OK cắt tiếp tuyến OC tại Q

\(\Rightarrow\) \(\widehat{KOC}=\widehat{QOC}\)

Ta có: \(\widehat{BOP}+\widehat{POK}+\widehat{KOQ}+\widehat{QOC}=\widehat{BOC}\)

\(\Leftrightarrow\)\(2\widehat{POK}+2\widehat{KOQ}=\widehat{BOC}\)

\(\Leftrightarrow\) \(2\widehat{POQ}=\widehat{BOC}\)

Vì tứ giác ABOC nội tiếp đường tròn (cmtrn)

\(\Rightarrow\) \(\widehat{BAC}+\widehat{BOC}=\) \(180^0\)

\(\Leftrightarrow\) \(\widehat{MAN}+2\widehat{POC}\) \(=180^0\) (!!)

Từ (!)(!!) \(\Rightarrow\) \(\widehat{M}=\widehat{POC}\)

\(\widehat{PON}\) là góc ngoài của ΔQOM

\(\Rightarrow\) \(\widehat{MPO}+\widehat{M}=\widehat{QON}\)

\(\Leftrightarrow\) \(\widehat{MPO}+\widehat{M}=\widehat{NOQ}+\widehat{POQ}\) (mà \(\widehat{M}=\widehat{POQ}\))

\(\Rightarrow\) \(\widehat{MPO}=\widehat{QON}\)

Xét ΔMOP∼ΔNQO vì :

\(\widehat{M}=\widehat{N}\) (cmtrn)

\(\widehat{MPO}=\widehat{QON}\) (cmtrn)

2 tháng 2 2018

a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.

Vậy tứ giác ABOC là tứ giác nội tiếp.

b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)

Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:

\(AH.AO=AB^2\)

Suy ra AD.AE = AH.AO

c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)

\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)

\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)

Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)

\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)

\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)

Sử dụng bất đẳng thức Cô-si ta có:

\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)

26 tháng 8 2020

acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O) e) Đường thẳng qua D  song...
Đọc tiếp

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Cho điểm A nằm ngoài đường tròn (O;R), từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE (B, C là hai tiếp điểm, O nằm trong góc BAE). BC cắt OA tại I 
a) Chứng minh: tứ giác ABOC nội tiếp và OA vuông góc với BC 
b) Chứng minh OI.IA=(BC^2)/4 và AB.AC = AD.AE 
c) Vẽ đường kính BK của (O), Tia KD cắt OA tại F. Chứng minh FB vuông góc với EB 
d) Gọi H là trung điểm của DE, từ B kẻ dây BN song song với DE. Chứng minh 3 điểm N, H, C thẳng hàng. 

3. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

Giúp em giai  cau 1 d, cau 2 c, câu 3 c , cảm ơn nhiều

2
14 tháng 4 2016
2c. ta co goc CAO=OAB=OBC=KDC(goc noi tiep chan cung KC) =>tu giac CDFA noi tiep =>goc ADF=ACF lai co goc ADF=KDE=EBK (goc noi tiep chan cung EK) goc ACF=ABF ( B,C doi xung qua OA) =>goc EBK=ABF ma ABF + KBF =90 => EBK+KBF =90 => EBF=90 =>EB vuong goc voi BF
15 tháng 4 2016

cam on ban nha

con cau 3c giup minh duoc ko

26 tháng 12 2020

Xét tam giác OKB có:

OI2=IK x IB

mà IB=IC (OI là đường trung trực)

=>OI2=IK x IC (1)

Xét tam giác OAB có:

BI2=OI x IA  (2)

Xét tam giác vuông OBI có:

OB2=BI2+OI2=R (3)

Từ (1) và (2) và (3) =>IK x IC+OI x IA=OB2=R2 (CMX)

8 tháng 5 2020

ajnomoto