Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là abcdef (a#0 ; a;b;c;d;e;f € A ; f chẵn )
f có 3 cách chọn
a có 5 cách chọn lọc
b;c;d;e đều có 6 cách chọn
=> có 3*5*6*6*6*6 = 19440 số thỏa mãn yêu cầu bài toán
b) gọi số cần tìm là abcdef (a#0;f=0,5 ; a;b;c;d;e;f € A )
f=0,5 => f có 2 cách chọn
a có 5 cách chọn
b;c;d;e đều có 6 cách chọn
=> có 2*5*6*6*6*6 = 12960
Gọi số cần lập
Bước 1: Xếp chữ số 0 vào 1 trong 5 vị trí từ a2 đến a6, có 5 cách xếp.
Bước 2: Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn), có 5 cách xếp.
Bước 3: Chọn 4 chữ số trong 8 chữ số {2, 3, 4, 5, 6 , 7, 8, 9}để xếp vào 4 vị trí còn lại, có cách.
Theo quy tắc nhân có số thỏa yêu cầu.
Chọn D.
Số tự nhiên có 6 chữ số có dạng: \(\overline{abcdef}\)
TH1: \(a=3\)
f có 2 cách chọn.
\(\overline{bcde}\) có \(A^4_6\) cách lập.
\(\Rightarrow\) Lập được \(2A^4_6=720\) số tự nhiên thỏa mãn.
TH2: \(b=3\)
Nếu \(f=0\Rightarrow\) a có 6 cách chọn.
\(\overline{cde}\) có \(A_5^3\) cách lập.
\(\Rightarrow\) Lập được \(6.A_5^3=360\) số tự nhiên thỏa mãn.
Nếu \(f=5\Rightarrow\) a có 5 cách chọn.
\(\overline{cde}\) có \(A_5^3\) cách lập.
\(\Rightarrow\) Lập được \(5A_5^3=300\) số tự nhiên thỏa mãn.
Vậy lập được \(720+360+300=1380\) số tự nhiên thỏa mãn.
Ta có 5 cách chọn hàng chục và bốn cách chọn hàng đơn vị nên ta có 4*5=20 số