\(\frac{1-\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

Ta có : \(\frac{1-\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}=\frac{\left(1-\sqrt{2}\right)\left(2\sqrt{3}+3\sqrt{2}\right)}{\left(2\sqrt{3}-3\sqrt{2}\right)\left(2\sqrt{3}+3\sqrt{2}\right)}=\frac{2\sqrt{3}+3\sqrt{2}-2\sqrt{6}-6}{12-18}\)

\(=\frac{\sqrt{12}+\sqrt{18}-\sqrt{24}-\sqrt{36}}{-6}\)\(=\frac{-\sqrt{12}-\sqrt{18}+\sqrt{24}+\sqrt{36}}{6}\)

3 tháng 8 2020

a/ \(\frac{1}{2+\sqrt{3}}-\frac{1}{2-\sqrt{3}}+5\sqrt{3}\)

\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+5\sqrt{3}\)

\(=\frac{2-\sqrt{3}}{4-3}-\frac{2+\sqrt{3}}{4-3}+5\sqrt{3}\)

\(=2-\sqrt{3}-2-\sqrt{3}+5\sqrt{3}\)

\(=3\sqrt{3}\)

Vậy..

3 tháng 8 2020

b/ \(\frac{1}{\sqrt{5}+2}-\sqrt{9+4\sqrt{5}}\)

\(=\frac{1}{\sqrt{5}+2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\frac{1}{\sqrt{5}+2}-\left|\sqrt{5}+2\right|\)

\(=\frac{\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\sqrt{5}-2\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

Vậy..

4 tháng 8 2018

\(\frac{1-\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}\)

\(=\frac{\left(1-\sqrt{2}\right)\left(2\sqrt{3}+3\sqrt{2}\right)}{\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2}\)

\(=\frac{2\sqrt{3}+3\sqrt{2}-2\sqrt{6}-6}{12-18}\)

\(=\frac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}-2-\sqrt{6}\right)}{-6}\)

\(=2+\sqrt{6}-\sqrt{3}-\sqrt{2}\)

25 tháng 7 2019

\(\frac{1-\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}\)

\(=\frac{\left(1-\sqrt{2}\right)\left(2\sqrt{3}+3\sqrt{2}\right)}{\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2}\)

\(=\frac{2\sqrt{3}+3\sqrt{2}-2\sqrt{6}-6}{12-18}\)

\(=\frac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}-2-\sqrt{6}\right)}{-6}\)

\(=2+\sqrt{6}-\sqrt{3}-\sqrt{2}\)

Hông chắc !!!

10 tháng 10 2017

bạn hãy nhân ở mẫu với biểu thức tương ướng để tạo ra biểu thức liên hợp , là HĐT số 3 ạ 

19 tháng 8 2019

\(\frac{1}{\sqrt{13-\sqrt{48}}}=\frac{1}{\sqrt{12+1+2\cdot2\sqrt{3}}}=\frac{1}{2\sqrt{3}+1}=\frac{-1+2\sqrt{3}}{11}\)\

10 tháng 8 2020

Câu b nè: 

\(B=\frac{2}{\left(\sqrt[3]{2}\right)^2+\sqrt[3]{2}+\left(\sqrt[3]{2}\right)^3}\)

Đặt: \(\sqrt[3]{2}=a\)

=> \(B=\frac{a^3}{a^3+a^2+a}=\frac{a^2}{a^2+a+1}=\frac{a^2\left(a-1\right)}{\left(a^2+a+1\right)\left(a-1\right)}=\frac{a^3-a^2}{a^3-1}=\frac{2-\sqrt[3]{4}}{2-1}=2-\sqrt[3]{4}\)

Vậy \(B=2-\sqrt[3]{4}\)

19 tháng 9 2016

\(\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}\)
\(=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2+2\sqrt{2\cdot3}+3-5}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{5+2\sqrt{6}-5}=\frac{\sqrt{6}\cdot\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{\sqrt{6}\cdot2\sqrt{6}}=\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}\)

18 tháng 9 2016

Ta có \(\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\) = \(\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{5+2\sqrt{6}-5}\)

\(\frac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{12}\)

23 tháng 7 2019

\(a,\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{\left(\sqrt{2}+\sqrt{3}\right)^2-\sqrt{6}^2}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{2\sqrt{6}-1}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(2\sqrt{6}+1\right)}{2\sqrt{6}^2-1^2}=\frac{4\sqrt{3}+6\sqrt{2}+12+\sqrt{2}+\sqrt{3}+\sqrt{6}}{11}\)\(=\frac{\sqrt{6}+5\sqrt{3}+7\sqrt{2}+12}{11}\)

\(b,\frac{1}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\left(\sqrt{z}+\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)}=\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\left(\sqrt{x}+\sqrt{y}\right)^2-\sqrt{z}^2}\)

\(=\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{x+2\sqrt{xy}+y-z}\)