\(\dfrac{13}{\sqrt{3}-2}\) ; \(\dfrac{2-\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

mk lm 1 bài bn minh họa ; rồi bn lm câu còn lại cho quen nha

đối với loại bài này ta chỉ cần nhân liên hợp là được :

ta có : \(\dfrac{13}{\sqrt{3}-2}=\dfrac{13\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}=\dfrac{13\sqrt{3}+26}{\left(\sqrt{3}\right)^2-2^2}\)

\(=\dfrac{13\sqrt{3}+26}{3-4}=\dfrac{13\sqrt{3}+26}{-1}=-13\sqrt{3}-26\)

bạn làm từng bước đường bỏ bước là đc .

13 tháng 7 2018

cám ơn cậu

24 tháng 5 2018

a=1/(√3+√2+1)=(√3-(√2+1)/[3-(√2+1)^2]

=(√3-√2-1)/(3-(3+2√2)

=(√3-√2-1)/(-2√2)

=-(√6-2-√2)/4

=(2+√2-√6)/4

a: \(=\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{3}}{7+2\sqrt{10}-3}=\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{3}}{4+2\sqrt{10}}\)

\(=\dfrac{-\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(4-2\sqrt{10}\right)}{24}\)

b: \(=\dfrac{2+\sqrt{3}+\sqrt{5}}{4-8+2\sqrt{15}}=\dfrac{2+\sqrt{3}+\sqrt{5}}{2\sqrt{15}-4}\)

\(=\dfrac{\left(2+\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{15}+4\right)}{44}\)

1 tháng 8 2018

a. \(\dfrac{1}{\sqrt{5}-\sqrt{3}+\sqrt{2}}=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{\left(\sqrt{5}-\sqrt{3}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}-\sqrt{2}\right)}=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{\left(\sqrt{5}-\sqrt{3}\right)^2-2}=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{5+3-2-2\sqrt{15}}=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{6-2\sqrt{15}}=\dfrac{\left(\sqrt{5}-\sqrt{3}-\sqrt{2}\right)\left(3+\sqrt{15}\right)}{\left(3-\sqrt{15}\right)\left(3+\sqrt{15}\right)2}=\dfrac{3\sqrt{5}-3\sqrt{3}-3\sqrt{2}+5\sqrt{3}-3\sqrt{5}-\sqrt{30}}{\left(9-15\right).2}=\dfrac{2\sqrt{3}-3\sqrt{2}-\sqrt{30}}{-12}\)b. \(\dfrac{1}{2-\sqrt{3}-\sqrt{5}}=\dfrac{2-\sqrt{3}+\sqrt{5}}{\left(2-\sqrt{3}-\sqrt{5}\right)\left(2-\sqrt{3}+\sqrt{5}\right)}=\dfrac{2-\sqrt{3}+\sqrt{5}}{\left(2-\sqrt{3}\right)^2-5}=\dfrac{2-\sqrt{3}+\sqrt{5}}{4-4\sqrt{3}+3-5}=\dfrac{2-\sqrt{3}+\sqrt{5}}{2-4\sqrt{3}}=\dfrac{\left(2-\sqrt{3}+\sqrt{5}\right)\left(1+2\sqrt{3}\right)}{2\left(1-2\sqrt{3}\right)\left(1+2\sqrt{3}\right)}=\dfrac{2+4\sqrt{3}-\sqrt{3}-6+\sqrt{5}+2\sqrt{15}}{2.\left(1-12\right)}=\dfrac{3\sqrt{3}+\sqrt{5}+2\sqrt{15}-4}{-22}\)

Bài 50:

\(\dfrac{5}{\sqrt{10}}=\dfrac{5\sqrt{10}}{10}=\dfrac{\sqrt{10}}{2}\)

\(\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

\(\dfrac{1}{3\sqrt{20}}=\dfrac{1}{6\sqrt{5}}=\dfrac{\sqrt{5}}{30}\)

\(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)

25 tháng 6 2018

a) \(\dfrac{\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}=\dfrac{\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)}\dfrac{\sqrt{2}+2+\sqrt{6}}{\left(1+\sqrt{2}\right)^2-3}=\dfrac{\sqrt{2}+2+\sqrt{6}}{2\sqrt{2}+3-3}=\dfrac{\sqrt{2}+2+\sqrt{6}}{2\sqrt{2}}=\dfrac{1+\sqrt{2}+\sqrt{3}}{2}\)

b) \(\dfrac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{2\sqrt{6}+5-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{2\sqrt{6}}=\dfrac{3\sqrt{2}+2\sqrt{3}+\sqrt{30}}{2\sqrt{6}\cdot\sqrt{6}}=\dfrac{3\sqrt{2}+2\sqrt{3}+\sqrt{30}}{12}\)

12 tháng 8 2018

mấy bài dạng này bn nên sử dụng cách nhân liên hợp hoặc phân tích đa thức thành nhân tử nha . mk lm 1 bài còn lại thì bn tự lm cho quen nha :)

a) ta có : \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}-\sqrt{7}}=\dfrac{\left(\sqrt{6}+\sqrt{14}\right)\left(2\sqrt{3}+\sqrt{7}\right)}{\left(2\sqrt{3}-\sqrt{7}\right)\left(2\sqrt{3}+\sqrt{7}\right)}\)

\(=\dfrac{6\sqrt{2}+\sqrt{42}+2\sqrt{42}+7\sqrt{2}}{\left(2\sqrt{3}\right)^2-\left(\sqrt{7}\right)^2}=\dfrac{13\sqrt{2}+3\sqrt{42}}{5}\)

gợi ý : b) phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức số \(6\)

c) nhân liên hợp 2 lần nha .

12 tháng 8 2018

a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}-\sqrt{7}}\)

=\(\dfrac{\left(\sqrt{6}+\sqrt{14}\right)\left(2\sqrt{3}+\sqrt{7}\right)}{\left(2\sqrt{3}-\sqrt{7}\right).\left(2\sqrt{3}+\sqrt{7}\right)}\)

=\(\dfrac{\left(\sqrt{6}+\sqrt{14}\right).\left(2\sqrt{3}+\sqrt{7}\right)}{12-7}\)

=\(\dfrac{2\sqrt{18}+\sqrt{42}+2\sqrt{42}+\sqrt{98}}{5}\)

=\(\dfrac{6\sqrt{2}+\sqrt{42}+2\sqrt{42}+7\sqrt{2}}{5}\)

=\(\dfrac{3\sqrt{42}+13\sqrt{2}}{5}\)

b) \(\dfrac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)

=\(\dfrac{\left(5\sqrt{5}+3\sqrt{3}\right).\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right).\left(\sqrt{5}-\sqrt{3}\right)}\)

=\(\dfrac{25-5\sqrt{15}+3\sqrt{15}-9}{2}\)

=\(\dfrac{16-2\sqrt{15}}{2}=8-\sqrt{15}\)

Câu c mk chưa làm đượcbucminh

24 tháng 4 2017

a. \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)

b. \(\dfrac{26}{5-2\sqrt{3}}=\dfrac{26\left(5+2\sqrt{3}\right)}{\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)}=\dfrac{26\left(5+2\sqrt{3}\right)}{13}=2\left(5+2\sqrt{3}\right)=10+4\sqrt{3}\)

c. \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}=\dfrac{\left(2\sqrt{10}-5\right)\left(4+\sqrt{10}\right)}{\left(4-\sqrt{10}\right)\left(4+\sqrt{10}\right)}=\dfrac{3\sqrt{10}}{6}=\dfrac{\sqrt{10}}{2}\)

d. \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}=\dfrac{\left(9-2\sqrt{3}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}=\dfrac{23\sqrt{6}}{46}=\dfrac{\sqrt{6}}{2}\)

26 tháng 8 2017

bài 1) a) \(xy\sqrt{\dfrac{x}{y}}=x\sqrt{y}\sqrt{y}\dfrac{\sqrt{x}}{\sqrt{y}}=x\sqrt{x}\sqrt{y}=\left(\sqrt{x}\right)^3\sqrt{y}\)

b) \(\sqrt{\dfrac{5a^3}{49b}}=\dfrac{\sqrt{5a^3}}{\sqrt{49b}}=\dfrac{\sqrt{5a^3}}{7\sqrt{b}}=\dfrac{\sqrt{5a^3}.\sqrt{b}}{7\sqrt{b}.\sqrt{b}}=\dfrac{\sqrt{5a^3b}}{7b}\)

bài 2) a) \(\dfrac{\sqrt{3}-3}{1-\sqrt{3}}=\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=\sqrt{3}\)

b) \(\dfrac{5-\sqrt{15}}{\sqrt{3}-\sqrt{5}}=\dfrac{-\sqrt{5}\left(\sqrt{3}-\sqrt{5}\right)}{\sqrt{3}-\sqrt{5}}=-\sqrt{5}\)

c) \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)

22 tháng 6 2017

a) \(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}\) = \(\dfrac{\sqrt{3}+1-\sqrt{2}}{\left(\sqrt{3}+1+\sqrt{2}\right)\left(\sqrt{3}+1-\sqrt{2}\right)}\)

= \(\dfrac{\sqrt{3}+1-\sqrt{2}}{\left(\sqrt{3}+1\right)^2-2}=\dfrac{\left(\sqrt{3}+1-\sqrt{2}\right)\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

= \(\dfrac{3-\sqrt{3}+\sqrt{3}-1-\sqrt{6}+\sqrt{2}}{2\left(3-1\right)}\) = \(\dfrac{2-\sqrt{6}+\sqrt{2}}{4}\)

b) \(\dfrac{1}{\sqrt{5}+2-\sqrt{3}}=\dfrac{\sqrt{5}+2+\sqrt{3}}{\left(\sqrt{5}+2\right)^2-3}\) = \(\dfrac{\sqrt{5}+\sqrt{3}+2}{4\sqrt{5}+6}\)

= \(\dfrac{\left(\sqrt{5}+\sqrt{3}+2\right)\left(4\sqrt{5}-6\right)}{\left(4\sqrt{5}+6\right)\left(4\sqrt{5}-6\right)}\) = \(\dfrac{20-6\sqrt{5}+4\sqrt{15}-6\sqrt{3}+8\sqrt{5}-12}{\left(4\sqrt{5}\right)^2-36}\)

= \(\dfrac{8+2\sqrt{5}-6\sqrt{3}+4\sqrt{15}}{44}\) = \(\dfrac{2\left(4+\sqrt{5}-3\sqrt{3}+2\sqrt{15}\right)}{2\left(22\right)}\)

= \(\dfrac{4+\sqrt{5}-3\sqrt{3}+2\sqrt{15}}{22}\)