\(\frac{1}{\sqrt{13-\sqrt{48}}}\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

\(\frac{1}{\sqrt{13-\sqrt{48}}}=\frac{1}{\sqrt{12+1+2\cdot2\sqrt{3}}}=\frac{1}{2\sqrt{3}+1}=\frac{-1+2\sqrt{3}}{11}\)\

10 tháng 8 2020

Câu b nè: 

\(B=\frac{2}{\left(\sqrt[3]{2}\right)^2+\sqrt[3]{2}+\left(\sqrt[3]{2}\right)^3}\)

Đặt: \(\sqrt[3]{2}=a\)

=> \(B=\frac{a^3}{a^3+a^2+a}=\frac{a^2}{a^2+a+1}=\frac{a^2\left(a-1\right)}{\left(a^2+a+1\right)\left(a-1\right)}=\frac{a^3-a^2}{a^3-1}=\frac{2-\sqrt[3]{4}}{2-1}=2-\sqrt[3]{4}\)

Vậy \(B=2-\sqrt[3]{4}\)

3 tháng 8 2020

a/ \(\frac{1}{2+\sqrt{3}}-\frac{1}{2-\sqrt{3}}+5\sqrt{3}\)

\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+5\sqrt{3}\)

\(=\frac{2-\sqrt{3}}{4-3}-\frac{2+\sqrt{3}}{4-3}+5\sqrt{3}\)

\(=2-\sqrt{3}-2-\sqrt{3}+5\sqrt{3}\)

\(=3\sqrt{3}\)

Vậy..

3 tháng 8 2020

b/ \(\frac{1}{\sqrt{5}+2}-\sqrt{9+4\sqrt{5}}\)

\(=\frac{1}{\sqrt{5}+2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\frac{1}{\sqrt{5}+2}-\left|\sqrt{5}+2\right|\)

\(=\frac{\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\sqrt{5}-2\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

Vậy..

6 tháng 7 2019

Em thử nhá, ko chắc đâu

1) \(\frac{2}{\sqrt{20}}=\frac{2\sqrt{20}}{20}\) 2) \(\frac{4}{\sqrt{8}}=\frac{4\sqrt{8}}{8}\)

3) \(\frac{2+\sqrt{3}}{\sqrt{2}}=\frac{2\sqrt{2}+\sqrt{6}}{2}\) 4) \(\frac{1}{\sqrt{6}-2}=\frac{\sqrt{6}+2}{6-4}=\frac{\sqrt{6}+2}{2}\)

5) \(\frac{1}{\sqrt{2}-\sqrt{3}}=\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}=-\left(\sqrt{2}+\sqrt{3}\right)\)

6) \(\frac{9a-b}{3\sqrt{a}-\sqrt{b}}=\frac{\left(9a-b\right)\left(3\sqrt{a}+b\right)}{\left(3\sqrt{a}-\sqrt{b}\right)\left(3\sqrt{a}+\sqrt{b}\right)}=\left(3\sqrt{a}+b\right)\)

7) + 8) em chưa nghĩ ra

6 tháng 7 2019

ong tth :v

\(\frac{2}{\sqrt{20}}=\frac{\sqrt{4}}{\sqrt{4}.\sqrt{5}}=\frac{1}{\sqrt{5}}\)

\(\frac{4}{\sqrt{8}}=\frac{\sqrt{16}}{\sqrt{8}}=\sqrt{2}\)

\(\frac{2+\sqrt{3}}{\sqrt{2}}=\sqrt{2}+\frac{\sqrt{3}}{\sqrt{2}}=\sqrt{2}+\sqrt{1,5}\)

\(\frac{1}{\sqrt{6}-2}=\frac{\sqrt{6}+2}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}=\frac{\sqrt{6}+2}{2}\)

\(\frac{1}{\sqrt{2}-\sqrt{3}}=\frac{\sqrt{3}+\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)}=\frac{\sqrt{3}+\sqrt{2}}{-1}=-\sqrt{3}-\sqrt{2}\)

7: chưa

8: chưa

9:\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\left(2+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)

28 tháng 2 2017

\(A=\dfrac{2}{2.\sqrt[3]{2}+2+\sqrt[3]{2^2}}=\dfrac{2}{\left(\sqrt[3]{2}\right)^2+2.\left(\sqrt[3]{2}\right)+\left(\sqrt{2}\right)^2}\)

\(A=\dfrac{2.\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)}{\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)\left[\left(\sqrt[3]{2}\right)^2+2.\left(\sqrt[3]{2}\right)+\left(\sqrt{2}\right)^2\right]}=\dfrac{2.\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)}{\left(\sqrt[3]{2}\right)^3-\left(\sqrt{2}\right)^3}=\dfrac{2.\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)}{2-2\sqrt{2}}\)

\(A=\dfrac{2\left[.\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)\right].\left(1+\sqrt{2}\right)}{2\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}=\left(\sqrt{2}+1\right)\left(\sqrt{2}-\sqrt[3]{2}\right)\)

28 tháng 2 2017

ở phân thức A nhân cả tử và mẫu cho: (2\(\sqrt[3]{2}\))2-2.\(\sqrt[3]{2}\left(2+\sqrt[3]{4}\right)+\left(2-\sqrt[3]{4}\right)^2\)

ở phân thức B nhân cả tử và mẫu cho :(2\(\sqrt[3]{2}\))2+\(2.\sqrt[3]{2}\left(2-\sqrt[3]{4}\right)+\left(2-\sqrt[3]{4}\right)^2\)

18 tháng 7 2016

a.\(\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}\)

b. \(\frac{1}{3\sqrt{20}}=\frac{\sqrt{20}}{60}=\frac{2\sqrt{5}}{60}=\frac{\sqrt{5}}{30}\)

c. \(\frac{2\sqrt{2}+2}{5\sqrt{2}}=\frac{2\left(\sqrt{2}+1\right)}{5\sqrt{2}}=\frac{2\sqrt{2}\left(\sqrt{2}+1\right)}{10}=\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{5}\)

 

18 tháng 7 2016

d.\(\frac{\sqrt{21}-\sqrt{7}}{1-\sqrt{3}}=\frac{\sqrt{7}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=\frac{-\sqrt{7}\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=-\sqrt{7}\)

e.\(\frac{3}{\sqrt{3}+1}=\frac{3\left(\sqrt{3}-1\right)}{3-1}=\frac{3\left(\sqrt{3}-1\right)}{2}\)

f.\(\frac{2}{\sqrt{3}-1}=\frac{2\left(\sqrt{3}+1\right)}{3-1}=\frac{2\left(\sqrt{3}+1\right)}{2}=\sqrt{3}+1\)

a) Ta có:

5√15+12√20+√5515+1220+5

=√52.15+√(12)2.20+√5=√25.15+√14.20+√5=√255+√204+√5=√5+√5+√5=(1+1+1)√5=3√5=52.15+(12)2.20+5=25.15+14.20+5=255+204+5=5+5+5=(1+1+1)5=35

b)  Ta có: 

√12+√4,5+√12,512+4,5+12,5

=√12+√92+√252=√12+√9.12+√25.12=√12+√32.12+√52.12=√12+3√12+5√12=(1+3+5).√12=9√12=91√2=9.√22=9√22=12+92+252=12+9.12+25.12=12+32.12+52.12=12+312+512=(1+3+5).12=912=912=9.22=922

c) Ta có:

√20−√45+3√18+√72=√4.5−√9.5+3√9.2+√36.2=√22.5−√32.5+3√32.2+√62.2=2√5−3√5+3.3√2+6√2=2√5−3√5+9√2+6√2=(2√5−3√5)+(9√2+6√2)=(2−3)√5+(9+6)√2=−√5+15√2=15√2−√520−45+318+72=4.5−9.5+39.2+36.2=22.5−32.5+332.2+62.2=25−35+3.32+62=25−35+92+62=(25−35)+(92+62)=(2−3)5+(9+6)2=−5+152=152−5

d) Ta có:

0,1√200+2√0,08+0,4.√50=0,1√100.2+2√0,04.2+0,4√25.2=0,1√102.2+2√0,22.2+0,4√52.2=0,1.10√2+2.0,2√2+0,4.5√2=1√2+0,4√2+2√2=(1+0,4+2)√2=3,4√2



 

Bạn giải bài đâu vậy? Kiếm điểm hỏi đáp hở, Boy anime?