Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi 5 điểm đó lần lượt là A,B,C,D,E
Nếu lấy 4 điểm A,B,D,C làm 4 đỉnh của 1 tứ giác lồi thì bài toán đc chứng minh
Nếu 4 điểm đó ko là đỉnh của 1 tứ giác lồi thì có 1 điểm phải nằm trong tam giác mà đỉnh của tam giác là 3 điểm còn lại.
Lấy điểm D nằm trong tam giác
kẻ AD cát BC tại M
BD cắt AC tại N
CD cắt AB tại P
Chia mặt phẳng thành 9 miền khác nhau
ADN là miền thứ nhất
ADP là miền thứ 2
BDP là miền thứ 3
BDM là miền thứ tư
CDM là miền thứ 5
CDN là miền thứ 6
trên nửa mặt phẳng bờ là đoạn thẳng AC ko chứa điểm B là miền thứ 7
tương tự trên nửa mặt phẳng bờ là đoạn thẳng AB ko chứa điểm C là miền thứ 8
trên nửa mặt phẳng bờ là đoạn thẳng BC ko chứa điểm A là miền thứ 9
Nếu điểm E thuộc miền 1,4,8 ta chọn 4 điểm E,A,D,B. Nếu điểm E thuộc miền 2,5,7 ta chọn E và A,D,C. Nếu E thuộc miền 3,6,9 thì ta chọn E và B,D,C.

a: Ta có: AM+MB=AB
CP+PD=CD
AQ+QD=AD
CN+NB=CB
mà AM=CP=AQ=CN và AB=CD=AD=CB
nên MB=PD=QD=NB
Xét tứ giác BMDP có
BM//DP
BM=DP
Do đó: BMDP là hình bình hành
b: ABCD là hình thoi
=>AC⊥BD tại O và O là trung điểm chung của AC và BD
Xét tứ giác BNDQ có
BN//DQ
BN=DQ
Do đó: BNDQ là hình bình hành
=>BD cắt NQ tại trung điểm của mỗi đường
mà O là trung điểm của BD
nên O là trung điểm của NQ
=>N,O,Q thẳng hàng
c: AMCP là hình bình hành
=>AC cắt MP tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của MP
ΔAMQ cân tại A
=>\(\hat{AMQ}=\frac{180^0-\hat{MAQ}}{2}=\frac{180^0-\hat{BAD}}{2}\left(1\right)\)
ΔABD cân tại A
=>\(\hat{ABD}=\frac{180^0-\hat{BAD}}{2}\left(2\right)\)
Từ (1),(2) suy ra \(\hat{AMQ}=\hat{ABD}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên MQ//BD
Ta có: DQ=DP
=>ΔDQP cân tại D
=>\(\hat{DQP}=\frac{180^0-\hat{QDP}}{2}=\frac{180^0-\hat{ADC}}{2}\left(3\right)\)
ΔDAC cân tại D
=>\(\hat{DAC}=\frac{180^0-\hat{ADC}}{2}\left(4\right)\)
Từ (3),(4) suy ra \(\hat{DQP}=\hat{DAC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên PQ//AC
mà AC⊥BD
nên PQ⊥BD
Ta có: PQ⊥BD
QM//BD
DO đó: QM⊥QP
Xét tứ giác MNPQ có
O là trung điểm chung của MP và NQ
=>MNPQ là hình bình hành
Hình bình hành MNPQ có QM⊥QP
nên MNPQ là hình chữ nhật