Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Định nghĩa: Tỉ lệ thức là một đẳng thức của hai tỉ số = (ĐK b, d ¹ 0).
a, d là ngoại tỉ; b, c là trung tỉ.
- Tính chất: .
- Công thức: Nếu có ad = bc. Chia 2 vế cho tích bd
= Þ = (bd ¹ 0).
- Số hữu tỉ và số vô tỉ được gọi chung là số thực
- Mỗi một điểm trên trục số biểu diễn bởi số thực
- Mỗi một số thực trên trục số được biểu diễn bởi điểm
=> Trục số thực
1) Tỉ lệ thức là đẳng thức của hai tỉ số : \(\frac{a}{b}=\frac{c}{d}\)
Tính chất 1: Nếu thì a.d = b.c
Tính chất 2: Nếu a.d = b.c , a, b, c,d ≠ 0 thì ta có các Tỉ lệ thức :
; ; ;
2) Tập hợp các số viết được dưới dạng số thập phân vô hạn KHÔNG tuần hoàn. Và kí hiệu là I.
tỉ lệ thức là 1 đẳng thức
số vô tỉ là số thập phân vô hạn không tuần hoàn vd:1,4582176...
số thực gồm số hữu tỉ và số vô tỉ
căn bậc hai của 1 số không âm là x sao cho x2 = a
còn lại tự làm
\(1.\)
Giá trị tuyệt đối của một số hữu tỉ x, kí hiệu là |x|, được xác định như sau:
\(2.\)
+ Nhân hai lũy thừa cùng cơ số :
\(a^m.a^n=a^{m+n}\)
+ Chia hai lũy thừa cùng cơ số :
\(a^m:a^n=a^{m-n}\left(a\ne0;m\ge n\right)\)
+ Lũy thừa của lũy thừa :
\(\left(x^m\right)^n=x^{m.n}\)
+ Lũy thừa của một tích :
\(\left(x.y\right)^n=x^n.y^n\)
+ Lũy thừa của một thương :
\(\left(\frac{x}{y}\right)^n=\frac{x^n}{y^n}\left(y\ne0\right)\)
5/
- Nếu đại lượng y liên hệ với đại lượng x theo công thức y=xk ( với k là hằng số khác 0 ) thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ là k .
* Tính chất của hai đại lượng tỉ lệ thuận là :
- Nếu hai đại lượng tỉ lệ thuận với nhau thì :
- Tỉ số hai giá trị tương ứng của chúng luôn không đổi và bằng hệ số tỉ lệ .
- Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia .
* Tính chất của hai đại lượng tỉ lệ nghịch là :
- Nếu hai đại lượng tỉ lệ nghịch với nhau thì :
- Tích hai giá trị tương ứng của chúng luôn không đổi và bằng hệ số tỉ lệ .
- Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo tỉ số hai giá trị tương ứng của đại lượng kia .
1. 3 cách viết là: -0,6 ; -6/10 ; -9/15 . (Cậu tự biểu diễn nhé !)
2. Số hữu tỉ dương là những số hữu tỉ lớn hơn 0. Số hữu tỉ âm là những số hữu tỉ nhỏ hơn 0. Số 0 không phải là số hữu tỉ dương và cũng không phải là số hữu tỉ âm.
3. Gía trị tuyệt đối của 1 số hữu tỉ x, kí hiệu IxI là khoảng cách từ điểm x đến điểm 0 trên trục số.
4. Lũy thừa bật n của số hữu tỉ x, kí hiệu là x mũ n, là tích của n thừa số x, n là một số tự nhiên lớn hơn 1. Vd: xn = x.x...x (x thuộc Q. n thuộc N. n > 1)
5. Nhân 2 lũy thừa cùng cơ số: xm . xn = xm+n
Chia 2 lũy thừa cùng cơ số khác 0: xm : xn = xm-n (x khác 0. m > hoặc = n)
Lũy thừa của một lũy thừa: (xm)n = xm.n)
Lũy Thừa của một tích: (x.y)n = xn . yn
Lũy thừa của một thương: (x/y)n = xn/yn .
6. Thương của phép chia số hữu tỉ x cho số hữu tỉ y (y khác 0) gọi là tỉ số của hai số x và y, kí hiệu là x/y hay x:y . Vd: tỉ số của 2 số -5,12 và 10,25 được viết là -5,12/10,25 hay -5,12:10,25.
7. Tỉ lệ thức là đẳng thức của 2 tỉ số a/b = c/d hay a:b = c:d . Từ tỉ lệ thức a/b = c/d ta suy ra a/b=c/d=a+b/c+d=a-c/b-d, với b khác +- d . Từ dãy tỉ số bằng nhau a/b=c/d/e/f ta suy ra: a/b = c/d = e/f = a+c+e/b+d+f = a-c+e/b-d+f, với giả thiết các số đều có nghĩa.
8. Các số viết được dưới dạng số thập phân vô hạn không tuần hoàn được gọi là số vô tỉ. Vd: Số\(\) pi = 3,45557532323525970,... 0,54455552244178 là các số vô tỉ.
9. Số hữu tỉ và số vô tỉ gọi chung là số thực.
Mỗi điểm trên trục số đều biểu diễn một số thực. Vì thế trục số còn gọi là trục số thực. Tập hợp các số thực lấp đầy trục số.
10. Căn bậc 2 của một số a không âm là số x sao cho x2 = a .
. Cái này trong sách có mà bạn. Chúc bạn học tốt nha !
ý thui thui~ khỏi cần hay giúp mk câu hỏi kia nhóe @Nguyễn Huy Thắng
Câu hỏi của (っ◔◡◔)っ ♥ GDragon Huyền Tồ ♥ - Toán lớp 7 | Học trực tuyến