Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi \(S_1S_2=a\) tại M là vân sáng bậc 4 nên \(x_M=4i_1.\)
Nếu tăng S1S2 một lượng \(\Delta a\) thì khoảng vân giảm => M là vân sáng bậc 3k.
tức là \(x_M=3ki_2.\left(2\right)\)
Nếu giảm S1S2 một lượng \(\Delta a\) thì khoảng vân tăng => M là vân sáng bậc k
tức là \(x_M=ki_3.\left(3\right)\)
Cho (2) = (1) => \(\frac{i_1}{i_2}=\frac{a+\Delta a}{a}=\frac{4}{k}=.\left(3\right)\)
Cho (3) = (1) => \(\frac{i_1}{i_2}=\frac{a-\Delta a}{a}=\frac{4}{3k}.\left(4\right)\)
Chia (3) cho (4) ta được:
\(\frac{\left(a+\Delta a\right)}{\left(a-\Delta a\right)}=3\Rightarrow\Delta a=0.5a\)
Nếu tăng a thêm 2\(\Delta a\)=> \(x_M=ki_4=\frac{k\lambda D}{a+2\Delta a}=\frac{k\lambda D}{2a}=\frac{k}{2}i_1\)
So sánh với (1)=> \(\frac{k}{2}=4\Rightarrow k=8\)
Như vậy M là vân sáng bậc 8.
\(i = \frac{\lambda D}{a} =\frac{0,5. 1}{0,5}=1mm.\)
Số vân sáng trên trường giao thoa L là
\(N_s = 2.[\frac{L}{2i}]+1= 2.2.6+1 = 13.\)
Số vân tối trên trường giao thoa L là
\(N_t = 2.[\frac{L}{2i}+0,5]= 2.7 = 14.\)
Xây dựng từ phần lý thuyết, hiệu đường đi của ánh sáng từ hai khe đến vân tối thứ \(k+1\) là
\(d_2-d_1 = (k+0,5)\lambda.\)
Áp dụng với \(k+1 = 3\) => \(d_2-d_1 = (2+0,5)\lambda = 2,5 \lambda.\)
\(x_s= k\frac{\lambda D}{a}.\)
\(d_2-d_1 = \frac{x_sa}{D}= k\lambda\)
=>\(k= \frac{d_2-d_1}{\lambda}=\frac{1,5.10^{-6}}{\lambda}.(1)\)
Thay các giá trị của bước sóng \(\lambda\)1, \(\lambda\)2,\(\lambda\)3 vào biểu thức (1) làm sao mà ra số nguyên thì đó chính là vân sáng của bước sóng đó.
Khi đặt thêm một bản thủy tinh mỏng trước nguồn S1 thì hệ vân sẽ dịch chuyển về phía S1 một đoạn là
\(x = \frac{e(n-1)D}{a}= \frac{12.0,5.1}{1}=6 mm.\)
Kính lúp đóng vai trò chính là màn hứng.
Lúc đầu: \(i = \frac{\lambda D}{a}= \frac{2,4}{16}= 0,15mm.(1)\)
\(i' = \frac{\lambda (D+0,3)}{a}= 0,24mm.\)
=> \(\frac{i}{i'}= \frac{D}{D+0,3}= \frac{5}{8}.\)
=> \(D = 0,5m.\)
Bước sóng của bức xạ là \(\lambda = \frac{ai}{D} = \frac{1,8.0,15}{0,5}=0,54 \mu m.\)
Đáp án D
+ Khi khoảng cách 2 khe tới màn là a thì tại M là vân sáng bậc 4 nên
Bước sóng \(\lambda = v/f = 1/25 = 0.04m = 4cm.\)
Độ lệch pha giữa hai nguồn sóng là \(\triangle\varphi= \varphi_2-\varphi_1 = \frac{5\pi}{6}+\frac{\pi}{6} = \pi.\)
Biên độ sóng tại điểm M là \( A_M = |2a\cos\pi(\frac{10-50}{4}-\frac{\pi}{2\pi})| =0.\)
+ Ban đầu M là vân tối thứ 3 nên: \(x_M=\left(2+\frac{1}{2}\right)\frac{\lambda D}{a}\left(1\right)\)
+ Khi giãm S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc n nên: \(x_M=n\frac{\lambda D}{a-\Delta a}\left(2\right)\)
+ Khi tăng S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc 3n nên: \(x_M=3n\frac{\lambda D}{a+\Delta a}\left(3\right)\)
+ (2) và (3) \(\Rightarrow k\frac{\lambda D}{a-\Delta a}=3k\frac{\lambda d}{a+\Delta a}\Rightarrow\Delta a=\frac{a}{2}\)
+ Khi tăng S1S2 một lượng 2\(\Delta\)a thì M là sáng bậc k nên: \(x_M=k\frac{\lambda D}{a+2\Delta a}=2,5\frac{\lambda D}{a}\left(4\right)\)
+ Từ (1) và (4) \(\Rightarrow\) k = 5. Vậy tại M lúc này là vân sáng bậc 5.