Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x,y là kích thước của hình chữ nhật (x,y>0)
ta có: x2+y2=d2(đl pytago)
Từ (x-y)2>= 0 suy ra x2-2xy+y2>=0 suy ra x2+y2>= 2xy
Ta có xy<= d2/2, không đổi.
dấu ''='' xảy ra <=> x=y
suy ra ABCD là hình vuông
Vậy trong tất cả các hình chữ nhật có chiều dài đường chéo d không đổi thì hình vuông có diện tích lớn nhất và bằng \(\frac{8\sqrt{2}}{2}=4\sqrt{2}\)
cái hình thì mk gửi link trong ib nhé
a) Gọi O là giao điểm của AC và BD
\(\Delta OAB\) vuông tại O có \(OA^2+OB^2=AB^2=49\)
Lại có: \(\tan BAC=\tan OAB=\frac{OB}{OA}=\frac{3}{4}\)\(\Leftrightarrow\)\(\frac{OA^2}{16}=\frac{OB^2}{9}=\frac{OA^2+OB^2}{16+9}=\frac{49}{25}\)
\(\Rightarrow\)\(\hept{\begin{cases}\frac{OA}{4}=\frac{7}{5}\\\frac{OB}{3}=\frac{7}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}OA=\frac{28}{5}\left(cm\right)\\OB=\frac{21}{5}\left(cm\right)\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}AC=2OA=\frac{56}{5}\left(cm\right)\\BD=2OB=\frac{42}{5}\left(cm\right)\end{cases}}\)
\(\Rightarrow\)\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.\frac{56}{5}.\frac{42}{5}=\frac{1176}{25}=47,04\left(cm^2\right)\)
b) Gọi E, F lần lược là giao điểm của BD với MN và PQ
tam giác ABD có MQ // BD
\(\Rightarrow\)\(\frac{MQ}{BD}=\frac{MA}{AB}\) ( hệ quả định lí Talet )
tam giác OAD có QF // OA
\(\Rightarrow\)\(\frac{QF}{OA}=\frac{DQ}{AQ}=\frac{MB}{AB}\) ( hệ quả định lí Talet )
\(\Rightarrow\)\(\frac{MQ}{BD}+\frac{QF}{OA}=\frac{MA+MB}{AB}=1\)
\(\Rightarrow\)\(1\ge2\sqrt{\frac{MQ.QF}{BD.OA}}\)\(\Leftrightarrow\)\(MQ.QF\le\frac{1}{4}BD.OA\)
Tương tự, ta cũng có: \(NP.PF\le\frac{1}{4}BD.OC\)
\(\Rightarrow\)\(MQ.QF+NP.PF=S_{MEFQ}+S_{NEFP}=S_{MNPQ}\le\frac{1}{4}BD.AC=\frac{1}{2}S_{ABCD}=23,52\left(cm^2\right)\)
Dấu "=" xảy ra khi M, N, P, Q là trung điểm của AB, BC, CD, DA
Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (x>0)
=> chiều dài mảnh đất là x+6 (m)
Theo định lý Pytago ta có độ dài đường chéo là:
√x2+(x+6)2=√2x2+12x+36(m)⇒√2x2+12x+36=√654.x⇒2x2+12x+36=6516x2⇒−3316x2+12x+36=0⇒⎡⎣x=8(m)x=−2411(ktm)⇒S=x.(x+6)=8.(8+6)=112(m2)x2+(x+6)2=2x2+12x+36(m)⇒2x2+12x+36=654.x⇒2x2+12x+36=6516x2⇒−3316x2+12x+36=0⇒[x=8(m)x=−2411(ktm)⇒S=x.(x+6)=8.(8+6)=112(m2)
Vậy diện tích mảnh đất là 112m2
Bạn tự vẽ hình ...
Ta có : \(\frac{S_1}{S_2}=\frac{OD}{OB}=\frac{S_4}{S_3}\) \(\Rightarrow S_1.S_3=S_2.S_4\)(1)
Dễ dàng chứng minh được S2=S4 (Bạn tự chứng minh)
Xét : \(\left(\sqrt{S_2}-\sqrt{S_4}\right)^2=0\Leftrightarrow S_2+S_4=2\sqrt{S_2.S_4}\Leftrightarrow S_2+S_4=2\sqrt{S_1.S_3}\)(suy ra từ (1))
Ta có : \(S_{ABCD}=S_1+S_2+S_3+S_4=S_1+S_3+2\sqrt{S_1.S_3}=\left(\sqrt{S_1}+\sqrt{S_3}\right)^2\)
Đến đây thay số là được :)