Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I N M J P Q R K
Gọi AJ là đường trung tuyến của \(\Delta\)ABC. Đường thẳng qua N song song AB cắt BC tại P.
Đường thẳng qua C song song AB cắt đường thẳng qua M song song BC và AJ lần lượt tại Q,R.
Ta thấy \(\Delta\)MAN có đường cao AI đồng thời là đường phân giác nên \(\Delta\)MAN cân tại A
=> I cũng là trung điểm cạnh MN. Từ đó \(\Delta\)MBI = \(\Delta\)NPI (g.c.g) => NP = BM; ^INP = ^IMB
Mà NP // BM // CQ, BM = CQ nên NP // QC, NP = QC => Tứ giác NPQC là hình bình hành
Nếu ta gọi K là trung điểm PC thì N,K,Q thẳng hàng
Chú ý rằng \(\Delta\)NPC ~ \(\Delta\)ABC (g.g) với trung tuyến tương ứng NK,AJ => \(\Delta\)NPK ~ \(\Delta\)ABJ (c.g.c)
=> ^PNQ = ^PNK = ^BAJ. Kết hợp với ^INP = ^IMB (cmt) suy ra ^MNQ = ^INP + ^PNQ = ^BAJ + ^IMB (1)
Mặt khác: \(\Delta\)ABJ = \(\Delta\)RCJ (g.c.g) => AB = CR < AC => ^BAJ = ^CRJ > CAJ
Điều đó có nghĩa là ^BAJ > ^BAC/2 = ^BAI => ^BAJ + ^IMB > ^BAI + ^IMB = 900 (2)
Từ (1) và (2) suy ra ^MNQ > 900 => MQ là cạnh lớn nhất trong \(\Delta\)QMN => MN < MQ = BC
Vậy MN < BC.
trong tam giác ABC có BC+AC<AB<BC-AC là sai vì theo bất đẳng thức trong tam giác sẽ là BC-AC<AB<BC+AC