Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)
Do đó diện tích xq của hình nón là:
\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)
Đáp án C
mk nhầm câu c là 25f(x)
câu d là 24f(x)
mk nhầm nũa câu hỏi là cái f(x+2)-f(x) là bỏ nha
Lời giải:
b/ $x^2-4x+20=0$
$\Leftrightarrow (x-2)^2+16=0\Leftrightarrow (x-2)^2=-16< 0$ (vô lý)
Do đó pt vô nghiệm.
c/ $2x^3-3x+1=0$
$\Leftrightarrow 2x^2(x-1)+2x(x-1)-(x-1)=0$
$\Leftrightarrow (x-1)(2x^2+2x-1)=0$
$\Rightarrow x-1=0$ hoặc $2x^2+2x-1=0$
$\Leftrightarrow x=1$ hoặc $x=\frac{-1\pm \sqrt{3}}{2}$
Lần sau em đăng bài ở học 24 để mọi người giúp đỡ em nhé!
Link đây: Cộng đồng học tập online | Học trực tuyến
1. Gọi I là tâm của mặt cầu cần tìm
Vì I thuộc d
=> I( a; -1; -a)
Mặt cầu tiếp xúc với hai mặt phẳng (p), (Q). nên ta co:
d(I; (P))=d(I;(Q))
<=> \(\frac{\left|a+2\left(-1\right)+2\left(-a\right)+3\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|a+2\left(-1\right)+2\left(-a\right)+7\right|}{\sqrt{1^2+2^2+2^2}}\)
\(\Leftrightarrow\frac{\left|-a+1\right|}{3}=\frac{\left|-a+5\right|}{3}\Leftrightarrow a=3\)
=> I(3; -1; -3) ; bán kinh : R=d(I; P)=2/3
=> Phương trình mặt cầu:
\(\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)
đáp án C.
2. Gọi I là tâm mặt cầu: I(1; -1; 0)
Ta có: Phương trình mặt phẳng (P) tiếp xúc vs mặt Cầu S tại M
=> IM vuông góc vs mặt phẳng (P)
=> \(\overrightarrow{n_p}=\overrightarrow{MI}=\left(1;0;0\right)\)
=> Phương trình mặt phẳng (P) có véc tơ pháp tuyến: \(\overrightarrow{n_p}\)và qua điểm M
1(x-0)+0(y+1)+0(z-0) =0<=> x=0
đáp án B
3.
\(f\left(x\right)=\dfrac{1}{256}\left(2x+3\right)^{10}=\dfrac{1}{256} \sum \limits_{k=0} ^{10}C_{k}^{10}(2x)^k.3^{10-k}\)
Để có hệ số x^8 thì k=8 khi đó hệ số của x^8 là:
\(\dfrac{1}{256}C_{8}^{10}.2^8.3^{10-8}=405\)
đáp án D
4.
pt <=> \(\left(2.5\right)^{x^2-3}=10^{-2}.10^{3x-3}\)
\(\Leftrightarrow10^{x^2-3}=10^{3x-5}\)
\(\Leftrightarrow x^2-3=3x-5\Leftrightarrow x^2-3x+5=0\)
=> theo định lí viet tổng các nghiệm bằng 3, tích các nghiệm bằng 5
Đáp án A
Kí hiệu x, y thứ tự là chiều dài và chiều rộng của hình chữ nhật (x, y > 0). Khi đó xy = 48. Theo bất đẳng thức Cô-si, ta có :
. Vậy chu vi hình chữ nhật nhỏ nhất bằng (m) khi (m), tức là khi hình chữ nhật là hình vuông.
Gọi hai cạnh hình chữ nhật: \(x,y\left(x,y>0\right)\).
Do diện tích hình chữ nhật: \(xy=48\Rightarrow y=\dfrac{48}{x}\).
Chu vi hình chữ nhật là: \(2\left(x+y\right)=2\left(x+\dfrac{48}{x}\right)=\dfrac{2\left(x^2+48\right)}{x}\).
Xét hàm số: \(y=\dfrac{2\left(x^2+48\right)}{x}\) với \(x\in\left(0;+\infty\right)\).
\(y'\left(x\right)=\dfrac{2\left(x^2-48\right)}{x^2}\)
\(y'\left(x\right)=0\)\(\Leftrightarrow x=4\sqrt{3}\).
Bảng biến thiên:
TenAnh1
TenAnh1
A = (-4.32, -5.92)
A = (-4.32, -5.92)
A = (-4.32, -5.92)
B = (11.04, -5.92)
B = (11.04, -5.92)
B = (11.04, -5.92)
C = (-4.38, -5.98)
C = (-4.38, -5.98)
C = (-4.38, -5.98)
D = (10.98, -5.98)
D = (10.98, -5.98)
D = (10.98, -5.98)
Từ bảng biến thiên ta ta thấy giá trị nhỏ nhất của \(y\left(x\right)=16\sqrt{3}\) với \(x_{GTNN}=4\sqrt{3}\).
Suy ra hình chữ nhật có chu vi nhỏ nhất khi \(x=y=4\sqrt{3}\).
Đáp án C
Hướng dẫn giải: Gọi độ dài các cạnh của hình chữ nhật là a, b với 0 < a,b < 8
Ta có được:
Khi đó diện tích hình chữ nhật là: S ( a ) = a ( 8 - a ) = - 2 a + 8
Ta có bảng biến thiên như hình vẽ bên dưới đây
Bảng biến thiên
Dựa vào bàng biến thiên trên vậy ta kết luận được hình chữ nhật có diện tích lớn nhất bằng 16 khi cạnh bằng 4.