\(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\). Điểm M
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

21 tháng 4 2017

phương trình (E) có dạng:

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\)

Vì (E) đi qua điểm M nên

\(\dfrac{\dfrac{9}{5}}{a^2}+\dfrac{\dfrac{16}{5}}{b^2}=1\)

\(\dfrac{9}{a^2}+\dfrac{16}{b^2}=5\)(1)

Do tam giác \(MF_1F_2\)vuông tại M

Nên M thuộc đường tròn \(x^2+y^2=c^2\)

\(\dfrac{9}{5}+\dfrac{16}{5}=c^2\)

\(5=c^2\)

\(a^2-b^2=5\)

\(a^2=5+b^2\)

Thế vào pt(1)

\(9b^2+16a^2=5a^2b^2\)

\(9b^2+16\left(5+b^2\right)=5b^2\left(5+b^2\right)\)

\(5b^4-80=0\)

\(b^2=\pm4\)

\(\Rightarrow b^2=4\Rightarrow a^2=9\)

\(\left(E\right):\dfrac{x^2}{4}+\dfrac{y^2}{9}=1\)

\(\Rightarrow c=\sqrt{5};e=\dfrac{\sqrt{5}}{2}\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

9 tháng 4 2017

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

(E) đi qua M(0; 3), nên : \frac{0}{a^2} +\frac{9}{b^2} =1

=>b= 3.

(E) đi qua N(3; -12/5), nên : \frac{9}{a^2} +\frac{144}{25b^2} =1

=> a = 5.

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

có tiệu điểm F(\sqrt{3}; 0) => c = \sqrt{3} => a2 – b2 = 3 (1)

(E) đi qua M(1 ; \frac{\sqrt{3}}{2}), nên : \frac{1}{a^2} +\frac{3}{4b^2} =1 (2)

Từ (1) và (2) , ta được :

a2 = 4 ; b2 = 1

vậy : (E) : \frac{x^2}{4} +\frac{y^2}{1} =1

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng