K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(AB=\sqrt{\left(1+1\right)^2+\left(2-2\right)^2}=2\)

\(AC=\sqrt{\left(2+1\right)^2+\left(-3-2\right)^2}=\sqrt{34}\)

\(BC=\sqrt{\left(2-1\right)^2+\left(-3-2\right)^2}=\sqrt{26}\)

\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{3}{\sqrt{34}}\)

=>\(sinBAC=\dfrac{5\sqrt{34}}{34}\)

\(S_{ABC}=\dfrac{1}{2}\cdot2\cdot\sqrt{34}\cdot\dfrac{5}{\sqrt{34}}=5\)

24 tháng 4 2023

\(PT\left(T\right)\) có dạng \(x^2+y^2-2ax-2by+c=0\)

\(\left\{{}\begin{matrix}A\left(-1;2\right)\in\left(T\right)\\B\left(1;2\right)\in\left(T\right)\\C\left(2;-3\right)\in\left(T\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-1\right)^2+2^2+2a-4b+c=0\\1^2+2^2-2a-4b+c=0\\2^2+\left(-3\right)^2-4a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a-4b+c=-5\\-2a-4b+c=-5\\-4a+6b+c=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-\dfrac{4}{5}\\c=-\dfrac{41}{5}\end{matrix}\right.\)

\(\Rightarrow\)Tâm \(I\left(0;-\dfrac{4}{5}\right)\)

NV
26 tháng 12 2022

Do C thuộc trục tung nên tọa độ có dạng \(C\left(0;c\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-4;-1\right)\\\overrightarrow{AC}=\left(-1;c-2\right)\end{matrix}\right.\)

Do tam giác ABC vuông tại A \(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\)

\(\Rightarrow4-\left(c-2\right)=0\Rightarrow c=6\)

\(\Rightarrow C\left(0;6\right)\)

\(\Rightarrow\overrightarrow{AC}=\left(-1;4\right)\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{\left(-4\right)^2+\left(-1\right)^2}=\sqrt{17}\\AC=\sqrt{\left(-1\right)^2+4^2}=\sqrt{17}\end{matrix}\right.\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{17}{2}\)

19 tháng 12 2015

\(AB^2=\left(1+1\right)^2+\left(2-0\right)^2=8\)

\(AC^2=\left(5+1\right)^2+\left(-2-0\right)^2=39\)

\(BC^2=\left(5-1\right)^2+\left(-2-2\right)^2=32\)

Cạnh lớn nhất là AC, ta có:

AC2 < AB2 + BC2

=> Tam giác ABC nhọn

A B 5 1 2 -2 C D E F

Diện tích ABC= dt(CDEF) - dt(CDB) - dt(CFA) - dt(ABE) 

                     = 5.4 - 4.4/2 - 5.1/2 - 3.1/2

                      = 8

Gọi H(x,y), ta có BH vuông góc với AC => \(\overrightarrow{BH}.\overrightarrow{AC}=0\) => (x - 1).(5-0) + (y - 2)(-2 +1) = 0

=> 5x - y = 3    (1)

Phương trình đt AC là: \(\frac{y+1}{-2+1}=\frac{x-0}{5-0}\) => 5y + x = -5

Vì H thuộc AC nên  5y + x = -5    (2)

Từ (1) và (2), giải hệ pt ta có: x =5/13 và y = -14/13

Vậy H(5/13; -14/13)

23 tháng 12 2015

AB2=(1+1)2+(20)2=8

AC2=(5+1)2+(20)2=39

BC2=(51)2+(22)2=32

Cạnh lớn nhất là AC, ta có:

AC2 < AB2 + BC2

=> Tam giác ABC nhọn

AB512-2CDEF

Diện tích ABC= dt(CDEF) - dt(CDB) - dt(CFA) - dt(ABE) 

                     = 5.4 - 4.4/2 - 5.1/2 - 3.1/2

                      = 8

Gọi H(x,y), ta có BH vuông góc với AC => BH.AC=0 => (x - 1).(5-0) + (y - 2)(-2 +1) = 0

=> 5x - y = 3    (1)

Phương trình đt AC là: y+12+1=x050 => 5y + x = -5

Vì H thuộc AC nên  5y + x = -5    (2)

Từ (1) và (2), giải hệ pt ta có: x =5/13 và y = -14/13

Vậy H(5/13; -14/13)

18 tháng 6 2020

12345-4367nhéa

18 tháng 6 2020

bbbbmmnn

  
  
  
17 tháng 12 2023

 Gợi ý thôi nhé.

a) Có \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{\left(\left(-1\right)-6\right)^2+\left(2-\left(-1\right)\right)^2}=\sqrt{58}\)

Tương tự như vậy, ta tính được AC, BC. 

 Tính góc: Dùng \(\cos A=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}\)

b) Chu vi thì bạn lấy 3 cạnh cộng lại.

 Diện tích: Dùng \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)

c) Gọi \(H\left(x_H,y_H\right)\) là trực tâm thì \(\left\{{}\begin{matrix}AH\perp BC\\BH\perp AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)

 Sau đó dùng: \(\overrightarrow{u}\left(x_1,y_1\right);\overrightarrow{v}\left(x_2,y_2\right)\) thì \(\overrightarrow{u}.\overrightarrow{v}=x_1x_2+y_1y_2\) để lập hệ phương trình tìm \(x_H,y_H\)

Trọng tâm: Gọi \(G\left(x_G,y_G\right)\) là trọng tâm và M là trung điểm BC. Dùng \(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}\\y_M=\dfrac{y_B+y_C}{2}\end{matrix}\right.\) để tìm tọa độ M. 

 Dùng \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\) để lập hpt tìm tọa độ G.

17 tháng 12 2023

Bài gì vậy ạ?

23 tháng 6 2020

cho mình hỏi c2=100 tìm như thế nào

 

NV
15 tháng 6 2020

\(\overrightarrow{AB}=\left(1;-5\right)\)

Do \(\Delta\) vuông góc AB nên \(\Delta\) nhận \(\left(1;-5\right)\) là 1 vtpt

Phương trình \(\Delta\) có dạng: \(x-5y+c=0\) (với c khác 0 do \(\Delta\) tạo với 2 trục tọa độ 1 tam giác)

Giao điểm A của \(\Delta\) và Ox: \(\left\{{}\begin{matrix}y=0\\x-5y+c=0\end{matrix}\right.\) \(\Rightarrow A\left(-c;0\right)\) \(\Rightarrow OA=\left|c\right|\)

Giao điểm B của \(\Delta\) và Oy: \(\left\{{}\begin{matrix}x=0\\x-5y+c=0\end{matrix}\right.\) \(\Rightarrow B\left(0;\frac{c}{5}\right)\) \(\Rightarrow OB=\left|\frac{c}{5}\right|\)

\(S_{OAB}=10\Leftrightarrow\frac{1}{2}OA.OB=10\Leftrightarrow OA.OB=20\)

\(\Leftrightarrow\left|c\right|.\left|\frac{c}{5}\right|=20\Leftrightarrow c^2=100\Rightarrow\left[{}\begin{matrix}c=10\\c=-10\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-5y+10=0\\x-5y-10=0\end{matrix}\right.\)