K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

Ta có: \(\overrightarrow{AB}\left(4;-1\right);\overrightarrow{AC}\left(-1;-4\right)\)

\(\overrightarrow{AB}.\overrightarrow{AC}=4.\left(-1\right)+\left(-1\right)\left(-4\right)=0\)

Suy ra AB\(\perp\)AC

20 tháng 12 2021

1, Gọi tọa độ điểm D(x;y)

Ta có:\(\overrightarrow{AB}\left(8;1\right)\)

\(\overrightarrow{DC}\left(1-x;5-y\right)\)

Tứ giác ABCD là hình bình hành khi

\(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow1-x=8;5-y=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)

Vậy tọa độ điểm D(-7;4)

20 tháng 12 2021

câu 2 tương tự như câu 1 nha bạn

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

Do $E\in Oy$ nên đặt tọa độ điểm $E(0,a)$

Từ ĐKĐB: \(\overrightarrow{BC}=(-3,5)\); \(\overrightarrow{AE}=(-2,a-4)\)

Để $ABCE$ là hình thang có 2 đáy $BC$ và $AE$ thì \(\overrightarrow{BC}, \overrightarrow{AE}\) là 2 vecto cùng phương,cùng hướng.

Điều này xảy ra khi tồn tại $k>0$ sao cho:

$\overrightarrow{BC}=k\overrightarrow{AE}$

$\Leftrightarrow (-3,5)=k(-2,a-4)$

\(\Leftrightarrow \left\{\begin{matrix} -2k=-3\\ k(a-4)=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=\frac{3}{2}\\ k(a-4)=5\end{matrix}\right.\Rightarrow a-4=\frac{10}{3}\Rightarrow a=\frac{22}{3}\)

Vậy $E(0, \frac{22}{3})$

1 tháng 12 2019

Gọi tọa độ điểm \(E\) \(\left(0,a\right)\)

BC và AE là hai đáy hình thang:

\(\overrightarrow{AE}=k.\overrightarrow{BC}\)

\(\Rightarrow\left(-2,a-4\right)=k\left(-3,5\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-2=k.\left(-3\right)\\a-4=k.5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=\frac{2}{3}\\a=4+k.5\end{matrix}\right.\) \(\Rightarrow a=\frac{22}{3}\) \(\Rightarrow E\left(0,\frac{22}{3}\right)\)

NV
8 tháng 6 2020

Thay tọa độ A và B vào d thấy kết quả cùng dấu \(\Rightarrow\) A và B nằm cùng phía so với d

Gọi C là điểm đối xứng A qua d \(\Rightarrow MA=CM\Rightarrow MA+MB=CM+MB\ge CB\)

\(\Rightarrow MA+MB\) nhỏ nhất khi M;B;C thẳng hàng hay M là giao điểm của đường thẳng BC và d

Phương trình d' qua A và vuông góc d có dạng:

\(1\left(x-1\right)+2\left(y-0\right)=0\Leftrightarrow x+2y-1=0\)

D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+2y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;1\right)\)

C đối xứng A qua d khi và chỉ khi D là trung điểm AC \(\Rightarrow C\left(-3;1\right)\)

\(\Rightarrow\overrightarrow{CB}=\left(5;0\right)=5\left(1;0\right)\Rightarrow\) phương trình BC có dạng:

\(0\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow y-1=0\)

M là giao điểm d và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{2};1\right)\)