Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Gọi tọa độ điểm D(x;y)
Ta có:\(\overrightarrow{AB}\left(8;1\right)\)
\(\overrightarrow{DC}\left(1-x;5-y\right)\)
Tứ giác ABCD là hình bình hành khi
\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow1-x=8;5-y=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)
Vậy tọa độ điểm D(-7;4)
Lời giải:
Do $E\in Oy$ nên đặt tọa độ điểm $E(0,a)$
Từ ĐKĐB: \(\overrightarrow{BC}=(-3,5)\); \(\overrightarrow{AE}=(-2,a-4)\)
Để $ABCE$ là hình thang có 2 đáy $BC$ và $AE$ thì \(\overrightarrow{BC}, \overrightarrow{AE}\) là 2 vecto cùng phương,cùng hướng.
Điều này xảy ra khi tồn tại $k>0$ sao cho:
$\overrightarrow{BC}=k\overrightarrow{AE}$
$\Leftrightarrow (-3,5)=k(-2,a-4)$
\(\Leftrightarrow \left\{\begin{matrix} -2k=-3\\ k(a-4)=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=\frac{3}{2}\\ k(a-4)=5\end{matrix}\right.\Rightarrow a-4=\frac{10}{3}\Rightarrow a=\frac{22}{3}\)
Vậy $E(0, \frac{22}{3})$
Gọi tọa độ điểm \(E\) \(\left(0,a\right)\)
BC và AE là hai đáy hình thang:
\(\overrightarrow{AE}=k.\overrightarrow{BC}\)
\(\Rightarrow\left(-2,a-4\right)=k\left(-3,5\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-2=k.\left(-3\right)\\a-4=k.5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=\frac{2}{3}\\a=4+k.5\end{matrix}\right.\) \(\Rightarrow a=\frac{22}{3}\) \(\Rightarrow E\left(0,\frac{22}{3}\right)\)
Thay tọa độ A và B vào d thấy kết quả cùng dấu \(\Rightarrow\) A và B nằm cùng phía so với d
Gọi C là điểm đối xứng A qua d \(\Rightarrow MA=CM\Rightarrow MA+MB=CM+MB\ge CB\)
\(\Rightarrow MA+MB\) nhỏ nhất khi M;B;C thẳng hàng hay M là giao điểm của đường thẳng BC và d
Phương trình d' qua A và vuông góc d có dạng:
\(1\left(x-1\right)+2\left(y-0\right)=0\Leftrightarrow x+2y-1=0\)
D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+2y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;1\right)\)
C đối xứng A qua d khi và chỉ khi D là trung điểm AC \(\Rightarrow C\left(-3;1\right)\)
\(\Rightarrow\overrightarrow{CB}=\left(5;0\right)=5\left(1;0\right)\Rightarrow\) phương trình BC có dạng:
\(0\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow y-1=0\)
M là giao điểm d và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{2};1\right)\)
Ta có: \(\overrightarrow{AB}\left(4;-1\right);\overrightarrow{AC}\left(-1;-4\right)\)
Có \(\overrightarrow{AB}.\overrightarrow{AC}=4.\left(-1\right)+\left(-1\right)\left(-4\right)=0\)
Suy ra AB\(\perp\)AC