Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(A+B+C+D=360^O\)
gọi góc ngoài tại đỉnh A là A2
góc ngoài tại đỉnh C là C2
ta có :
\(\left(180-A_2\right)+B+\left(180-C_2\right)+D=360^o\)
\(\Rightarrow360^o-A_2+B-C_2+D=360^o\)
\(\Rightarrow B+D=A_2+C_2\)(đpcm)
vậy tổng hai góc ngoài của tứ giác tại hai đỉnh đối nhau bằng tổng hai góc trong của hai đỉnh còn lại
A B D C x y 1 1 2 2 ```````````````````````````
Ta có: góc A1 + góc A2 = 180 độ (kề bù) => góc A1 = 180 độ - góc A2
góc C1 + góc C2 = 180 độ (kề bù) => góc C1 = 180 độ - góc C2
=> góc A1 + góc C1 = 180 độ - góc A2 + 180 độ - góc C2
=> góc A1 + góc C1 = 360 độ - góc A2 - góc C2 (1)
Xét tứ giác ABCD có: góc A2 + góc B + góc C2 + góc D = 360 độ (tổng 4 góc trong tứ giác)
=> góc B + góc D = 360 độ - góc A2 - góc C2 (2)
Từ (1) và (2) => góc A1 + góc C1 = góc B + góc D
=> Tổng hai góc ngoài của tứ giác tại hai đỉnh đối nhau bằng tổng hai góc trong của hai đỉnh còn lại. (dpcm)
Ta có góc B2 = 180 độ - góc B1
góc C2 = 180 độ - góc C1
=> góc B2 + góc C2 = 360 độ - ( góc B1 + góc C1 ) (1)
Tứ giác ABCD có góc A + góc B + góc C + góc D = 360 độ
=> góc A + góc D = 360 độ - ( góc B1 + góc C1 ) (2)
Từ (1), (2) => góc B2 + góc C2 = góc A + góc D
Vậy tổng 2 góc ngoài tại 2 đỉnh bằng tổng 2 góc trong tại các đỉnh còn lại
A B C D 1 2 1 2
Tứ giác ABCD có AC vuông góc BD và AC cắt BD tạo O
\(AB^2=0A^2+OB^2\)
\(CD^2=OC^2+OD^2\)
\(AD^2=OA^2+OD^2\)
\(BC^2=OB^2+OC^2\)
\(\Rightarrow AB^2+CD^2=OA^2+OB^2+OC^2+OD^2\)(1)
\(AD^2+BC^2=OA^2+OD^2+OB^2+OC^2\)(2)
Từ (1) và 92) \(\Rightarrow AB^2+CD^2=AD^2+BC^2\)
a/ Gọi M là giao điểm của AB và EI, N là giao điểm của AD và FI.
Ta có BMIˆ=MEBˆ+MBEˆ=EIFˆ+MFIˆBMI^=MEB^+MBE^=EIF^+MFI^ ( góc ngoài tam giác ) →EIFˆ=MEBˆ+MBEˆ−MFIˆ (1)→EIF^=MEB^+MBE^−MFI^ (1)
Lại có DNIˆ=NFDˆ+NDFˆ=EIFˆ+NEIˆDNI^=NFD^+NDF^=EIF^+NEI^ ( góc ngoài tam giác ) →EIFˆ=NFDˆ+NDFˆ−NEIˆ (2)→EIF^=NFD^+NDF^−NEI^ (2)
Do EM là phân giác AEBˆ→MEBˆ=NEIˆAEB^→MEB^=NEI^
Do FN là phân giác
cho hình tứ giác ABCD, E là giao điểm của các đường thẳng AB và CD, F là giao điểm của các đường thẳng BC và AD. Các tia phân giác của góc E và F cắt nhau ở I. CMR:
a, Nếu góc BAD=130 độ, góc BCD= 50 độ thì IE vuông góc với IF.
b, Góc EIF bằng nửa tổng của một trong hai cặp góc đối của tứ giác ABCD
180 độ
180 ĐỘ