Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi độ dài đường cao là c, hình chiếu của hai cạnh 6 và 7 trên cạnh có độ dài bằng 9 lần lượt là a và b.
Ta có: a < b (vì 6 < 7)
Theo định lí Pi-ta-go, ta có:
c 2 = 6 2 - a 2 c 2 = 7 2 - b 2
Suy ra:
36 - a 2 = 49 - b 2 ⇔ b 2 - a 2 = 49 - 36
⇔ (b + a)(b – a) = 13 (*)
Mà x + y = 9 nên:
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi cạnh dài nhất là a ta có
Ta có √[p(p-a)(p-b)(p-c)]=(a*ha)/2 <=> ha=4*√110 /9 cái còn lại thì áp dụng định lý pytago là ra
![](https://rs.olm.vn/images/avt/0.png?1311)
ΔABC vuông tại A có AB = 3, AC = 4 và đường cao AH như trên hình.
Theo định lí Pitago ta có:
Mặt khác, A B 2 = B H . B C (định lí 1)
Theo định lí 3 ta có: AH.BC = AB.AC
![](https://rs.olm.vn/images/avt/0.png?1311)
ΔABC vuông tại A có AB = 3, AC = 4 và đường cao AH như trên hình.
Theo định lí Pitago ta có:
Mặt khác, AB2 = BH.BC (định lí 1)
Theo định lí 3 ta có: AH.BC = AB.AC
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
3 4 x y z
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
Tham khảo: