K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 163 (33-SNC). Cho 5 số tự nhiên lẻ bất kì, chứng tỏ rằng ta luôn chọn được bốn số có tổng chia hết cho 4 . Bài 164 (33-SNC). Viết 6 số tự nhiên vào 6 mặt của một con xúc xắc. Chứng tỏ rằng khi ta gieo xúc xắc xuống mặt bàn thì trong 5 mặt có thể nhìn thấy bao giờ cũng tìm được một hay nhiều mặt để tổng các số trên mặt đó chia hết cho 5 . Bài A. Cho 2021 số tự nhiên bất kì, chứng...
Đọc tiếp

Bài 163 (33-SNC). Cho 5 số tự nhiên lẻ bất kì, chứng tỏ rằng ta luôn chọn được bốn số có tổng chia hết cho 4 . Bài 164 (33-SNC). Viết 6 số tự nhiên vào 6 mặt của một con xúc xắc. Chứng tỏ rằng khi ta gieo xúc xắc xuống mặt bàn thì trong 5 mặt có thể nhìn thấy bao giờ cũng tìm được một hay nhiều mặt để tổng các số trên mặt đó chia hết cho 5 . Bài A. Cho 2021 số tự nhiên bất kì, chứng tỏ rằng trong đó tồn tại 1 số chia hết cho 2021 hoặc tồn tại 1 vài số có tổng chia hết cho 2021. Bài B. Cho một hình vuông cạnh bằng 5 và chia thành 25 hình vuông kích thước 1 x 1. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau. Bài C. Biết 997 là số nguyên tố lớn nhất , nhỏ hơn 1000. Chứng minh rằng tồn tại số tự nhiên có dạng 111...1 chia hết cho 997.

1
29 tháng 11 2021

Đinh Hoàng Anh lớp 6CT Lương Thế Vinh Hà Nội cơ sở A đúng kg =)))

12 tháng 11 2015

Tham khảo câu 2 trong câu hỏi tương tự nha bạn 

8 tháng 11 2018

Bài 1:

 Các đại biểu tương ứng với 6 điểm A, B, C, D, E, F. Hai đại biểu X và Y nào đó mà quen nhau thì ta tô đoạn thẳng XY bằng màu xanh còn nếu X vá Y không quen nhau thì tô đoạn XY màu đỏ.

    Xét 5 đoạn thẳng AB, AC, AD, AE, AF: Theo nguyên tắc Dirichlet thì tồn tại ba đoạn cùng màu. Giả sử AB, AC, AD màu xanh. Xét ba điểm B, C, D: vì 3 đại biểu nào cũng có hai người quen nhau suy ra một trong ba đoạn BC, CD, DB màu xanh.

     Giả sử BC màu xanh thì A, B, C đôi một quen nhau.

     Còn nếu AB, AC, AD màu đỏ thì B, C, D đôi một quen nhau.

8 tháng 11 2018

Theo nguyên lý Di-rich-le ta suy ra: Tồn tại hai số trong 20 số khi chia cho 19 có cùng số dư. Suy ra hiệu của hai số đó chia hết cho 19.

Giả sử 10n, 10m là hai số có cùng số dư khi chia cho 19 (1 ≤ n < m ≤ 20).

  • 10m – 10n ⋮ 19
  • 10n.(10m-n – 1) ⋮ 19, mà 10n không chia hết cho 19 nên suy ra:

10m-n – 1 ⋮ 19

  • 10m-n – 1 = 19k (k ∈ N)
  • 10m-n = 19k + 1 (đpcm).
8 tháng 12 2018

Vì có 11 tổng mà chỉ có tận vùng bởi một trong các chữ số:0,1,2,3,...,9 nên luôn luôn tìm được hai tổng có chữ số tận cùng giống nhau ,do đó hiệu của chúng là số nguyên có tận cùng là 0,lên là số chia hết cho 10

31 tháng 12 2018

Vì có 11 tổng mà chỉ có tận vùng bởi một trong các chữ số:0,1,2,3,...,9

nên luôn luôn tìm được hai tổng có chữ số tận cùng giống nhau ,do đó hiệu của chúng là số nguyên có tận cùng là 0,lên là số chia hết cho 10

4 tháng 6 2015

Khi xét 1 số tự nhiên khi chia cho 10 
=> Có thể xảy ra 10 trường hợp về số dư (1) 
Mà các số tự nhiên từ 11 --> 21 gồm (21 - ) + 1 = 11 số.
Biết mỗi số cộng với đúng số thứ tự của nó được 1 tổng 
=> Có 11 tổng , mỗi tổng đều có giá trị là 1 số tự nhiên (2)
Từ (1) và (2) => Trong 11 tổng trên chắc chắn có 2tổng có cùng số dư khi chia cho 11 
=> Luôn hai tổng có hiệu chia hết cho 10.

31 tháng 12 2018

Khi xét 1 số tự nhiên khi chia cho 10 
=> Có thể xảy ra 10 trường hợp về số dư (1) 
Mà các số tự nhiên từ 11 --> 21 gồm (21 - ) + 1 = 11 số.
Biết mỗi số cộng với đúng số thứ tự của nó được 1 tổng 
=> Có 11 tổng , mỗi tổng đều có giá trị là 1 số tự nhiên (2)
Từ (1) và (2) => Trong 11 tổng trên chắc chắn có 2tổng có cùng số dư khi chia cho 11 
=> Luôn hai tổng có hiệu chia hết cho 10.

28 tháng 4 2015

Khi xét 1 số tự nhiên khi chia cho 10 
=> Có thể xảy ra 10 trường hợp về số dư (1) 
Mà các số tự nhiên từ 11 --> 21 gồm (21 - ) + 1 = 11 số.
Biết mỗi số cộng với đúng số thứ tự của nó được 1 tổng 
=> Có 11 tổng , mỗi tổng đều có giá trị là 1 số tự nhiên (2)
Từ (1) và (2) => Trong 11 tổng trên chắc chắn có 2tổng có cùng số dư khi chia cho 11 
=> Luôn hai tổng có hiệu chia hết cho 10.

 

 cho mình 1 đ-ú-n-g nha bạn hiền

31 tháng 12 2018

Khi xét 1 số tự nhiên khi chia cho 10 
=> Có thể xảy ra 10 trường hợp về số dư (1) 
Mà các số tự nhiên từ 11 --> 21 gồm (21 - ) + 1 = 11 số.
Biết mỗi số cộng với đúng số thứ tự của nó được 1 tổng 
=> Có 11 tổng , mỗi tổng đều có giá trị là 1 số tự nhiên (2)
Từ (1) và (2) => Trong 11 tổng trên chắc chắn có 2tổng có cùng số dư khi chia cho 11 
=> Luôn hai tổng có hiệu chia hết cho 10.

15 tháng 12 2015

từ 1 đến 11 có 11 số

mà duy nhất chỉ có 9 c/số tận cùng :0,1,2,3,4,5,6,7,8,9

=> có ít nhất 2 số có chung c/số tận cùng 

=> hiệu chúng sẽ chia hết cho 10