Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh dự thi của hai trường A, B lần lượt là x, y (350 > x, y > 0) (học sinh)
Vì hai trường A, B có tổng cộng 350 học sinh dự thi nên ta có phương trình
x + y = 350 (học sinh)
Vì trường A có 97% và trường B có 96% số học sinh trúng tuyển và cả hai trường đó có 338 học sinh trúng tuyển nên ta có phương trình 97%.x +96%.y = 338
Suy ra hệ phương trình:
x + y = 350 97 % . x + 96 % . y = 338 ⇔ x = 350 − y 97. 350 − y + 96. y = 33800 ⇔ y = 150 x = 200 ( t h ỏ a m ã n )
Vậy trường B có 150 học sinh dự thi
Đáp án: B
Gọi số học sinh dự tuyển của trường AA là xx (học sinh) (x∈N∗;x<560x∈N∗;x<560)
Số học sinh dự tuyển của trường BB là yy (học sinh) (y∈N∗;y<560y∈N∗;y<560)
Vì tổng số học sinh dự thi của hai trường là 750 học sinh nên ta có phương trình: x+y=750x+y=750 (1)
Số học sinh trúng tuyển của trường AA là: 80%.x=45x80%.x=45x (học sinh)
Số học sinh trúng tuyển của trường BB là: 70%.y=710y70%.y=710y (học sinh)
Vì tổng số học sinh trúng tuyển của cả hai trường là 560560 học sinh nên ta có phương trình
45x+710y=56045x+710y=560
⇔8x+7y=5600⇔8x+7y=5600 (2)
Từ (1) và (2) ta có hệ phương trình
{x+y=7508x+7y=5600{x+y=7508x+7y=5600
⇔{7x+7y=52508x+7y=5600⇔{7x+7y=52508x+7y=5600
⇔{y=400(tm)x=350(tm)⇔{y=400(tm)x=350(tm)
Vậy số học sinh dự thi của trường AA là 350350 học sinh
Số học sinh dự thi của trường BB là 400400 học sinh.
1) Gọi x(km/h) là vận tốc của xe 1 ( x > 10 )
Vận tốc của xe 2 = x - 10 (km/h)
Thời gian xe 1 đi hết quãng đường AB = 160/x (km)
Thời gian xe 2 đi hết quãng đường AB = 160/(x-10) (km)
Khi đó xe 1 đến B sớm hơn xe 2 là 48 phút = 4/5 giờ nên ta có phương trình :
\(\frac{160}{x-10}-\frac{160}{x}=\frac{4}{5}\)
<=> \(\frac{160x}{x\left(x-10\right)}-\frac{160\left(x-10\right)}{x\left(x-10\right)}=\frac{4}{5}\)
=> 4x( x - 10 ) = 8000
<=> x2 - 10x - 2000 = 0 (*)
Xét (*) có Δ = b2 - 4ac = (-10)2 - 4.1.(-2000) = 100 + 8000 = 8100
Δ > 0 nên (*) có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{10+\sqrt{8100}}{2}=50\left(tm\right)\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{10-\sqrt{8100}}{2}=-40\left(ktm\right)\end{cases}}\)
Vậy vận tốc của xe 2 là 40km/h
gọi vận tốc của xe thứ hai là x (km/h)
⇒t/g xe thứ hai đi là \(\dfrac{160}{x}\)(h)
vận tốc của xe thứ nhất là x+10 (km/h) (x>0)
⇒t/g của xe thứ nhất đi là \(\dfrac{160}{x+10}\left(h\right)\)
vì xe thứ nhất đến sớm hơn xe thứ hai là 48'=\(\dfrac{4}{5}h\) nên ta có pt:
\(\dfrac{160}{x}-\dfrac{160}{x+10}=\dfrac{4}{5}\)
⇔\(\dfrac{800x+8000-800x}{5x\left(x+10\right)}=\dfrac{4x^2+40x}{5x\left(x+10\right)}\)⇒4x\(^2\)+40x-8000=0
Δ=40\(^2\)-4.4.(-8000)=129600>0
⇒pt có hai nghiệm pb
x\(_{_{ }1}\)=\(\dfrac{-40+\sqrt{129600}}{8}\)=40 (TM)
x\(_2\)=\(\dfrac{-40-\sqrt{129600}}{8}\)=-50 (KTM)
vậy vận tốc của xe thứ hai là 40 km/h
số hs hai trường là ; a,b (a,b€N)
84%(a+b)=21080%a+90%b=210
<=>21a+21b=25.210
8a+9b=10.210
(21.8-9.21)b=(25.8-10.21).210
b=2.10(5.21-4.25)=2.10.5=100
21a=25.210-21.100=210(25-10).=15.210
a=150
trường A có 150 hs thi
trường B có 100 hs thi
x là sô học sinh dự thi trường A
số học sinh dự thi cả 2 trường 420:84%=500
SHS thi đỗ của A:80%x
SHS thi đỗ của B: (500-x)90%
PT: 80%+(500-x)90%=420
A=300, B=200
Gọi x, y (học sinh) lần lượt là số học sinh dự thi vào lớp 10 của trườn A và Trường B ( x,y thuộc N*).
Vì có 210 học sinh thi đậu vào lớp 10 đat tỉ lệ 84% nên: (x+y).84%=210
<=> x + y = 250 (1).
Vì số học sinh đậu vào trường A Và B lần lượt là 80% và 90% nên: 0,8x + 0,9y= 210 (2).
Từ 1 và 2 ta có hpt:
x + y= 250
0,8x + 0,9y= 210
X= 150 hs
Y= 100 hs
Vậy có 150hs thi vào trường A và 100 hs thi vào trường B.
Số hs thi đậu vào trường A là: 150.80%= 120hs
Số hs thi đậu vào trường B là:
100.90%=90 hs.
Gọi x,yx,y lần lượt là số học sinh dự thi của THCS A và B
Đk: 250>x,y>0250>x,y>0
Dựa vào đề bài, ta có hpt:
{x+y=25023x−35y=2{x+y=25023x−35y=2
{x=120y=130{x=120y=130
Vậy số học sinh dự thi THCS A là 120120 học sinh
số học sinh dự thi THCS B là 130130 học sinh
Hok tốt ^^
Gọi số học sinh dự thi trường X, Y lần lượt là a, b (học sinh) (ĐK: a, b thuộc N*)
Theo đề ta có hê pt: \(\hept{\begin{cases}a+b=350\\\frac{97a}{100}+\frac{96b}{100}=338\end{cases}}\) <=> \(\hept{\begin{cases}a+b=350\\97a+96b=33800\end{cases}}\)<=> \(\hept{\begin{cases}a=200\\b=150\end{cases}}\)(TM)
Vậy ....
Gọi số học sinh dự thi của trường A là a(a thuộc N*,a<350)
Suy ra:số học sinh dự thi của trường B là 350-a
Theo bài ra ta có phương trình:
97%a+96%(350-a)=338 => 97%a+336-96%a=338 =>1%a=2 =>a=200(hs)
Số học sinh dự thi của trường B là 350-200=150(hs)
Kl