Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.D \(\dfrac{1}{3}\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=\dfrac{1}{3}\left(2\overrightarrow{BM}\right)=\dfrac{2}{3}\overrightarrow{BM}=\overrightarrow{BG}\)
2.A \(\overrightarrow{DA}+\overrightarrow{DB}+2.\overrightarrow{DC}=2.\overrightarrow{DM}+2.\overrightarrow{DC}=0\)
Gọi N' là điểm đối xứng của N wa đg thẳng AD(D là chân đg phân giác),gọi giao điểm N'N và AD là I
\(\Rightarrow\)N'N:3x-y+5
Tọa độ điểm I là nghiệm của hệ \(\begin{cases}x-3y-5=0\\3x+y+5=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\y=-2\end{cases}\)\(\Rightarrow\)N'(-2,1)
Tương tự:M'(\(\frac{-48}{5},\frac{-21}{5}\)
Ta có:MN':x+3y-1=0
M'N:y=-5
tọa độ điểm A là nghiệm của hệ \(\begin{cases}x+3y-1=0\\y=-5\end{cases}\)
\(\Rightarrow\)A(16,-5)
Do G là trọng tâm nên \(\overrightarrow{AG}=2\overrightarrow{GE}\) (E(x,y) là trung điểm của BC)
\(\Rightarrow\begin{cases}\frac{-50}{3}=2x+\frac{4}{3}\\\frac{10}{3}=2y+3\end{cases}\)\(\Rightarrow\begin{cases}x=-9\\y=0\end{cases}\)
B thuộc MN'\(\Rightarrow\) B\(\left(1-3b,b\right)\)
E là trung điểm BC \(\Rightarrow\) C(3b-19,-b)
Do C thuộc M'N\(\Rightarrow\) b=5
Suy ra B,C
trong wá trình làm có sai sót gì thì thông cảm
A C B M G
a)Theo bài ra => Tam giác ABC vuông cân ở A
M(1;-1) là trung điểm BC và G\(\left(\dfrac{2}{3};0\right)\) là trọng tâm
=>\(\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AG}\)
Giả sử A có tọa độ (a;b)
=>\(\left\{{}\begin{matrix}1-a=\dfrac{2}{3}\left(\dfrac{2}{3}-a\right)\\-1-b=-\dfrac{2}{3}b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}\\b=-3\end{matrix}\right.\)\(\Rightarrow A\left(\dfrac{5}{3};-3\right)\)
b)Do tam giác ABC vuông cân ở A=>GM vuông góc với BC
Ta có: \(\overrightarrow{GM}=\left(\dfrac{1}{3};-1\right)\)=>VTPT của đường thẳng BC là: \(\overrightarrow{n}=\left(1;-3\right)\) có M(1;-1) thuộc BC
=>phương trình đường thẳng BC:
1(x-1)-3(y+1)=0
hay x-3y-4=0
=> phương trình tham số của BC:\(\left\{{}\begin{matrix}x=3t+4\\y=t\end{matrix}\right.\)
=> tồn tại số thực t để B(3t+4;t) thuộc đường thẳng BC
MB=MA(do tam giác ABC vuông cân ở A,M là trung điểm BC)
=>\(\overrightarrow{MB}^2=\overrightarrow{MA}^2\)
=>(3t+3)2+(t+1)2=\(\left(\dfrac{2}{3}\right)^2+\left(-2\right)^2=\dfrac{40}{9}\)
=> \(t=-\dfrac{1}{3}\)hoặc \(t=-\dfrac{5}{3}\)
TH1: \(t=-\dfrac{1}{3}\)=>B\(\left(3;-\dfrac{1}{3}\right)\) ,do M(1;-1) là trung điểm BC=>C\(\left(-1;-\dfrac{5}{3}\right)\)
TH2:\(t=-\dfrac{5}{3}\)=>B\(\left(-1;-\dfrac{5}{3}\right)\),do M(1;-1) là trung điểm BC=>C\(\left(3;-\dfrac{1}{3}\right)\)
c) Tam giác ABC vuông cân ở A=>M(1;-1) là tâm đường tròn ngoại tiếp và MA là bán kính=>R2=MA2=\(\dfrac{40}{9}\)
Phương trình đường tròn ngoại tiếp tam giác ABC:
(C): \(\left(x-1\right)^2+\left(y+1\right)^2=\dfrac{40}{9}\)
Đáp án B
=> Đường thẳng AB có pt là: x- y – 5= 0.
Gọi G(a;3a- 8) suy ra C( 3a- 5; 9a -19).
Ta có:
Vậy C( 1 ; -1) và C( -2 ; 10)