\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(d1): x+căn 3y=0

=>VTPT là \(\left(1;\sqrt{3}\right)\)

(d2): x+10=0

=>x+0y+10=0

=>VTPT là (1;0)

\(cos\left(d1;d2\right)=\left|\dfrac{1\cdot1+\sqrt{3}\cdot0}{\sqrt{1^2+3}\cdot\sqrt{1^2}}\right|=\left|\dfrac{1}{2}\right|=\dfrac{1}{2}\)

=>(d1;d2)=60 độ

1/Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD. Đỉnh B thuộc đường thẳng d1: 2x-y+2=0, đỉnh C thuộc đường thẳng d2: x-y-5=0. Gọi H là hình chiếu của B xuống AC, biết M(\(\dfrac{9}{5}\);\(\dfrac{2}{5}\)), K(9;2) lần lượt là trung điểm của AH và CD Tìm tọa độ các đỉnh hình chữ nhật ABCD, biết điểm C có hoành độ lờn hơn 4 2/Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, biết...
Đọc tiếp

1/Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD. Đỉnh B thuộc đường thẳng d1: 2x-y+2=0, đỉnh C thuộc đường thẳng d2: x-y-5=0. Gọi H là hình chiếu của B xuống AC, biết M(\(\dfrac{9}{5}\);\(\dfrac{2}{5}\)), K(9;2) lần lượt là trung điểm của AH và CD Tìm tọa độ các đỉnh hình chữ nhật ABCD, biết điểm C có hoành độ lờn hơn 4

2/Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, biết B(\(\dfrac{1}{2}\);1). Đường tròn nội tiếp tam giác ABC tieepa xúc với BC, CA, AB lần lượt tại D,E,F. Biết điểm D(3;1). đường thẳng È:y-3=0. Tìm tọa độ điểm A biết A có tung độ dương

3/ Trong mặt phẳng tọa độ Oxy, choa tam giác ABC cân tại A , D là trung điểm AB . Biết rằng I(\(\dfrac{11}{3}\);\(\dfrac{5}{3}\)); E(\(\dfrac{13}{3}\);\(\dfrac{5}{3}\)) lần lượt là tâm đường tròn ngoại tiếp tam giác ABC , trọng tâm tam giác ADC, các diểm M(3;-1);N(-3;0) lần lượt thuộc các đường thẳng DC, AB.Tìm tọa độ các điểm A,B,C, biết A có tung độ dương

4/ Trong mặt phẳng tọa độ Oxy, hãy viết phương trình các cạnh của tam giác ABC biết trực tâm H(1;0) , chân đường cao hạ từ đinh B là K(0;2), trung điểm cạnh AB là M (3;1)

5/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại C có phân giác trong AD với D (\(\dfrac{7}{2}\);-\(\dfrac{7}{2}\)) thuộc BC . Gọi E,F là hai điểm làn lượt thuộc các cạnh AB, AC sao cho AE=AF. Đường thẳng EF cắt BC taị K.Biết E(\(\dfrac{3}{2}\);-\(\dfrac{5}{2}\)), F có hoành độ nhỏ hơn 3 và phương trình đường thẳng AK : x-2y-3=0. Viết phương trình của các cạnh tam giác ABC.

6/ Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x-1)2+(y-1)2 + 25 và các điểm A (7;9), B(0;8). Tìm tọa độ điểm M thuộc (c) sao cho biểu thức P= MA+2MB min

7/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có góc BAC =120O , đường cao BH: \(\sqrt{3}\)x+y-2=0. Trung điểm của cạnh BC là M( \(\sqrt{3}\);\(\dfrac{1}{2}\)) và trực tâm H(0;2). Tìm tọa độ các đỉnh B,C của tam giác ABC

8/ Trong mặt phẳng tọa độ Oxy, CHO (C1); x2 + y2-6x+8y+23=0, (C2) : x2 + y2+12x-10y+53=0 và (d) : x-y-1=0. Viết phương trình đường trong (C) có tâm thuộc (d), tiếp xúc trong với (C1), và tiếp xúc ngoài với (C2)

0
1 tháng 6 2020
https://i.imgur.com/YT9pqQw.jpg
NV
25 tháng 4 2020

Bài 2:

Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)

a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?

Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\)\(\Delta_2\) với đường tròn?

b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?

NV
25 tháng 4 2020

Bài 1b/

\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt

Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)

\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)

\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\)\(\left(1;3\right)\)

TH1: d' có pt dạng \(3x-y+c=0\)

\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)

TH2: d' có dạng \(x+3y+c=0\)

\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)

NV
11 tháng 4 2020

Dễ dàng nhận thấy AC là đường kính của đường tròn và AC vuông góc d1; AB vuông góc d2

Gọi tọa độ A có dạng \(A\left(a;-a\sqrt{3}\right)\) với \(a>0\)

Gọi d là đường thẳng qua A vuông góc d2 \(\Rightarrow\) d nhận \(\left(1;\sqrt{3}\right)\) là 1 vtpt

Phương trình d:

\(1\left(x-a\right)+\sqrt{3}\left(y+a\sqrt{3}\right)=0\Leftrightarrow x+\sqrt{3}y+2a=0\)

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+\sqrt{3}y+2a=0\\\sqrt{3}x-y=0\end{matrix}\right.\) \(\Rightarrow B\left(-\frac{a}{2};-\frac{a\sqrt{3}}{2}\right)\)

\(\Rightarrow\overrightarrow{BA}=\left(\frac{3a}{2};-\frac{a\sqrt{3}}{2}\right)\Rightarrow AB=a\sqrt{3}\)

Gọi d' là đường thẳng qua A và vuông góc d1 \(\Rightarrow\) d' nhận \(\left(1;-\sqrt{3}\right)\) là 1 vtpt

Phương trình d':

\(1\left(x-a\right)-\sqrt{3}\left(y+a\sqrt{3}\right)=0\Leftrightarrow x-\sqrt{3}y-4a=0\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}x-\sqrt{3}y-4a=0\\\sqrt{3}x-y=0\end{matrix}\right.\) \(\Rightarrow C\left(-2a;-2a\sqrt{3}\right)\)

\(\Rightarrow\overrightarrow{CB}=\left(\frac{3a}{2};\frac{3a\sqrt{3}}{2}\right)\) \(\Rightarrow BC=3a\)

\(S_{ABC}=\frac{1}{2}AB.BC=\frac{\sqrt{3}}{2}\Leftrightarrow\frac{1}{2}.a\sqrt{3}.3a=\frac{\sqrt{3}}{2}\) \(\Rightarrow a=\frac{\sqrt{3}}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}A\left(\frac{\sqrt{3}}{3};-1\right)\\C\left(-\frac{2\sqrt{3}}{3};-2\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}I\left(-\frac{\sqrt{3}}{6};-\frac{3}{2}\right)\\R=\frac{AC}{2}=1\end{matrix}\right.\)

Phương trình đường tròn: \(\left(x+\frac{\sqrt{3}}{6}\right)^2+\left(y+\frac{3}{2}\right)^2=1\)

11 tháng 4 2020

sao d lại nhận (1;\(\sqrt{3}\) ) là vtpt

NV
25 tháng 4 2020

a/ \(\overrightarrow{AB}=\left(0;4\right)=4\left(0;1\right)\) ; \(\overrightarrow{AC}=\left(-3;0\right)=-3\left(1;0\right)\) ; \(\overrightarrow{CB}=\left(3;4\right)\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\Rightarrow\Delta ABC\) vuông tại A

\(\Rightarrow\) Đường tròn ngoại tiếp tam giác ABC nhận trung điểm BC là tâm và BC là đường kính

Gọi I là trung điểm BC \(\Rightarrow I\left(\frac{1}{2};2\right)\)

\(R=\frac{BC}{2}=\frac{1}{2}\sqrt{3^2+4^2}=\frac{5}{2}\)

Phương trình (C):

\(\left(x-\frac{1}{2}\right)^2+\left(y-2\right)^2=\frac{25}{4}\Leftrightarrow x^2+y^2-x-4y-2=0\)

b/ Do d song song BC nên d nhận \(\left(4;-3\right)\) là 1 vtpt

Phương trình d có dạng: \(4x-3y+c=0\)

Áp dụng định lý Pitago:

\(d\left(I;d\right)=\sqrt{R^2-\left(\frac{EF}{2}\right)^2}=\frac{3}{2}\)

\(\Rightarrow\frac{\left|4.\frac{1}{2}-3.2+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\frac{3}{2}\Leftrightarrow\left|c-4\right|=\frac{15}{2}\Rightarrow\left[{}\begin{matrix}c=\frac{23}{2}\\c=-\frac{7}{2}\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}4x-3y+\frac{23}{2}=0\\4x-3y-\frac{7}{2}=0\end{matrix}\right.\)

Bài 2: 

Tọa độ giao điểm của Δ1 và Δ2 là:

\(\left\{{}\begin{matrix}2x+y=4\\5x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{9}\\y=\dfrac{26}{9}\end{matrix}\right.\)

Thay x=5/9 và y=26/9 vào Δ3, ta được:

\(\dfrac{5}{9}m+\dfrac{26}{3}-2=0\)

=>5/9m=-20/3

hay m=-12