K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

Đáp án A

- Do M thuộc d  suy ra M( t; -1-t).

 Nếu 2 tiếp tuyến vuông góc với nhau thì MAIB là hình vuông

(A; B là 2 tiếp điểm).

Do đó:

- Ta có :

- Do đó :  2t2+ 8= 12

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

NV
30 tháng 4 2019

(C) có tâm \(I\left(1;1\right)\) bán kính \(R=2\)

\(\Delta//d\Rightarrow\) phương trình \(\Delta\) có dạng: \(3x-4y+c=0\)

Áp dụng định lý Pitago: \(d\left(I;\Delta\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=1\)

\(\Rightarrow\frac{\left|3.1-4.1+c\right|}{\sqrt{3^2+4^2}}=1\Leftrightarrow\left|c-1\right|=5\Rightarrow\left[{}\begin{matrix}c=6\\c=-4\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x-4y+6=0\\3x-4y-4=0\end{matrix}\right.\)

NV
30 tháng 4 2019

Do tính chất của đường tròn nên luôn có 2 đường thẳng đối xứng nhau qua tâm đường tròn thỏa mãn điều kiện bài toán, kiểu như trên hình, 2 dây cung cắt bởi 2 đường thẳng đối xứng qua tâm luôn dài bằng nhau

Chắc chắn cả 2 đáp án đều đúng, ko cái nào sai cả, nếu trong phương án chọn chỉ có 2 đáp án nằm riêng lẻ thì 1 là đáp án sai, 2 là bạn để ý kĩ lại dấu của 2 đáp án coi, có khi họ cho khác đi 1 chút xíu

a: A(1;2); B(2;1)

=>\(\overrightarrow{AB}=\left(1;-1\right)\)

=>VTPT là (1;1)

Phương trình đường thẳng AB là:

1(x-1)+2(y-1)=0

=>x-1+2y-2=0

=>x+2y-3=0

b:

M(1;3); Δ: 3x+4y+10=0

Khoảng cách từ M đến Δ là:

\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)

 

Mn giúp em 3 bài này vs em cảm ơn! 1. Trong mặt phẳng tọa độ Oxy cho điểm A(3,1) và đường thẳng (d): x+y-2=0 a) Viết pt đường tròn (C) tâm A tiếp xúc với đường thẳng (d) b)Viết pt tiếp tuyến vs đường tròn (C) kẻ từ O(0,0) c) Tính bán kính đường tròn (C') tâm A, biết (C') cắt (d) tại 2 điểm E,F sao cho diện tích tam giác AEF= 6 2. Trong mặt phẳng tọa độ Oxy cho điểm I(1,-2) và đường thẳng (d)...
Đọc tiếp

Mn giúp em 3 bài này vs em cảm ơn!

1. Trong mặt phẳng tọa độ Oxy cho điểm A(3,1) và đường thẳng (d): x+y-2=0

a) Viết pt đường tròn (C) tâm A tiếp xúc với đường thẳng (d)

b)Viết pt tiếp tuyến vs đường tròn (C) kẻ từ O(0,0)

c) Tính bán kính đường tròn (C') tâm A, biết (C') cắt (d) tại 2 điểm E,F sao cho diện tích tam giác AEF= 6

2. Trong mặt phẳng tọa độ Oxy cho điểm I(1,-2) và đường thẳng (d) có pt \(\left\{{}\begin{matrix}x=t\\y=2-t\end{matrix}\right.\)

a) Lập pt đường tròn (C) tâm I tiếp xúc vs (d). Tìm tọa độ tiếp điểm

b)Viết pt tiếp tuyến với đường tròn (C), biết tiếp tuyến đó vuông góc với đường thẳng d

3. Trong mp tọa độ Oxy, viết pt đường tròn (C) thỏa mãn:

a) (C) có bán kính AB với A(4,0); B(2,5)

b) (C) đi qua A(1,3); B(-2,5) và có tâm thuộc đường thẳng (d): 2x-y+4=0

c) (C) đi qua A(4,-2) và tiếp xúc với Oy tại B(0,-2)

d) (C) đi qua A(0,-1), B(0,5) và tiếp xúc Ox

0
NV
22 tháng 4 2021

a.

\(R=d\left(A;d\right)=\dfrac{\left|3+1-2\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\)

Phương trình đường tròn:

\(\left(x-3\right)^2+\left(y-1\right)^2=2\)

b.

Tiếp tuyến d' qua O nên có dạng: \(ax+by=0\)

d' tiếp xúc (C) nên \(d\left(A;d'\right)=R\)

\(\Leftrightarrow\dfrac{\left|3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\Leftrightarrow\left(3a+b\right)^2=2a^2+2b^2\)

\(\Leftrightarrow7a^2+6ab-b^2=0\Rightarrow\left(a+b\right)\left(7a-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=0\\7a-b=0\end{matrix}\right.\) chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;7\right)\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}x-y=0\\x+7y=0\end{matrix}\right.\)

NV
22 tháng 4 2021

c.

Gọi M là trung điểm EF

\(\Rightarrow AM\perp EF\Rightarrow AM=d\left(A;d\right)=\sqrt{2}\)

\(S_{AEF}=\dfrac{1}{2}AM.EF=6\Rightarrow AM.EF=12\)

\(\Rightarrow EF=\dfrac{12}{\sqrt{2}}=6\sqrt{2}\)

\(\Rightarrow EM=\dfrac{EF}{2}=3\sqrt{2}\)

Áp dụng Pitago:

\(R'=AE=\sqrt{EM^2+AM^2}=2\sqrt{5}\)