\(^{x^2}\) và đường thẳng (d) :y= 2(m+3)x-2m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2020

b) Hoành độ giao điểm của parabol (P) và đường thẳng d là nghiệm của phương trình:

\(x^2=2\left(m+3\right)x-2m-5\Leftrightarrow x^2-2\left(m+3\right)x+2m+5=0\) (1)

\(\Delta'=\left(m+3\right)^2-\left(2m+5\right)=m^2+6m+9-2m-5=m^2+4m+4=\left(m+2\right)^2\)

Phương trình (1) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta'>0\)

\(\Delta'=\left(m+2\right)^2\ge0,\forall m\)

\(\Leftrightarrow\) \(\left(m+2\right)^2\ne0\Leftrightarrow m\ne-2\)

=> (P) cắt (d) tại 2 điểm phân biệt khi \(m\ne-2\)

Theo định lí Vi-ét: \(\left\{{}\begin{matrix}S=x_1+x_2=2\left(m+3\right)=2m+6\\P=x_1x_2=2m+5\end{matrix}\right.\)

\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=\frac{4}{3}\)

\(\Leftrightarrow\frac{\sqrt{x_2}+\sqrt{x_1}}{\sqrt{x_1x_2}}=\frac{4}{3}\)

\(\Rightarrow\left(\frac{\sqrt{x_2}+\sqrt{x_1}}{\sqrt{x_1x_2}}\right)^2=\frac{16}{9}\)

\(\Leftrightarrow\frac{x_2+2\sqrt{x_1x_2}+x_1}{x_1x_2}=\frac{16}{9}\)

\(\Leftrightarrow\frac{2m+6+2\sqrt{2m+5}}{2m+5}=\frac{16}{9}\)

\(\Leftrightarrow32m+80=18m+54+18\sqrt{2m+5}\)

\(\Leftrightarrow18\sqrt{2m+5}=14m+26\)

\(\Leftrightarrow\sqrt{2m+5}=\frac{7}{9}m+\frac{13}{9}\) (2)

ĐK: \(\left\{{}\begin{matrix}\frac{7}{9}m+\frac{13}{9}\ge0\\m\ne-2\end{matrix}\right.\Leftrightarrow m\ge-\frac{13}{7}\)

Bình phương 2 vế của phương trình (2):

\(2m+5=\frac{49}{81}m^2+\frac{182}{81}m+\frac{169}{81}\)

\(\Leftrightarrow\frac{49}{81}m^2+\frac{20}{81}m-\frac{236}{81}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\left(TM\right)\\m=-\frac{118}{49}\left(l\right)\end{matrix}\right.\)

Vậy m = 2 thỏa mãn đề bài

May mà nghiệm đẹp, phương trình xấu quá nên còn tưởng làm sai ;w;

30 tháng 1 2019

Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình

\(x^2=\left(2m-1\right)x-2m+1\)

\(\Leftrightarrow x^2-\left(2m-1\right)x+2m-1=0\)(1)

  Để (d) cắt (P) tại 2 điểm phân biệt thì pt (1) phải có 2 nghiệm phân biệt

Tức là \(\Delta>0\Leftrightarrow\left(2m-1\right)^2-4\left(2m-1\right)>0\) 

                        \(\Leftrightarrow\left(2m-1\right)\left(2m-5\right)>0\)

                         \(\Leftrightarrow\orbr{\begin{cases}m< \frac{1}{2}\\m>\frac{5}{2}\end{cases}}\)

Theo hệ thức Vi-ét có : \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=2m-1\end{cases}}\)

Vì \(x_1< \frac{3}{2}< x_2\)

\(\Rightarrow\left(x_1-\frac{3}{2}\right)\left(x_2-\frac{3}{2}\right)< 0\)

\(\Leftrightarrow x_1x_2-\frac{3}{2}\left(x_1+x_2\right)+\frac{9}{4}< 0\)

\(\Leftrightarrow2m-1-\frac{3}{2}\left(2m-1\right)+\frac{9}{4}< 0\)

\(\Leftrightarrow2m-1-3m+\frac{3}{2}+\frac{9}{4}< 0\)

\(\Leftrightarrow-m< -\frac{11}{4}\)

\(\Leftrightarrow m>\frac{11}{4}\)

28 tháng 3 2020

để (d) song song zới đường thẳng (d') 

=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)

b)phương trình hoành độ giao điểm của (d) zà (P)

\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)

ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)

để d cắt P tại hai điểm phân biệt 

=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)

lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)

để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)

từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương

13 tháng 11 2021

Giải thích các bước giải:

a,Thay m=3m=3 vào (d)(d) ta đc: y=2x−3y=2x-3

có đường thẳng (d)(d) đi qua điểm B(0;−3)B(0;-3) và điểm A(32;0)A(32;0)

Có tam giác tạo bởi (d)(d) và 2 trục tọa độ là ΔOABΔOAB

Có OA=∣∣∣32∣∣∣=32;OB=|−3|=3OA=|32|=32;OB=|-3|=3

→SOAB=12.OA.OB=12.3/2.3=94(đvdt)→SOAB=12.OA.OB=12.3/2.3=94(đvdt)

Vậy SOAB=94đvdtSOAB=94đvdt

b,Để (d)(d) cắt đt y=−x+1y=-x+1 ⇔m−1≠−1⇔m-1≠-1

⇔m≠0⇔m≠0

Để (d) cắt đt y=−x+1y=-x+1 tại điểm có hoành độ bằng −2-2 

Thay x=−2x=-2 vào 2 công thức hàm số ta đc hpt:

{y=(m−1).(−2)−my=2+1=3{y=(m−1).(−2)−my=2+1=3

→{3=−2m+2−my=3{3=−2m+2−my=3 

↔{−3m=1y=3{−3m=1y=3 

↔{m=−13y=3{m=−13y=3

→m=−13→m=-13(thỏa mãn)

Vậy m=−13m=-13 

Phương trình hoành độ của (d) với (P) là :

\(x^2=2x-n+3\)

\(\Leftrightarrow x^2-2x+n-3=0\)

Theo hệ thức vi-et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=n-3\end{matrix}\right.\)

Theo đề bài : \(x_1^2-2x_2+x_1x_2=16\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)-2x_2=16\)

\(\Leftrightarrow2x_1-2x_2=16\)

\(\Leftrightarrow x_1-x_2=8\)

Ta có hệ phương trình :

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1-x_2=8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_1=5\\x_2=3\end{matrix}\right.\)

\(\Rightarrow n-3=15\Leftrightarrow n=18\)

Vậy \(n=18\)