Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ nên sửa đề y=2(m-1)x-m2+6 và parobol (P)y=x2
a) Với m=3 ta được (d): y=4x-3
Hoành độ giao điểm của đường thẳng (d) và parabol (P0 là nghiệm của phương trình \(x^2=4x-3\)
<=> x2-4x+3=0
<=> x2-3x-x+3=0
<=> x(x-3)-(x-3)=0
<=> (x-3)(x-1)=0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}}\)
Vậy giao điểm của (d) và (P) là A(1;1); B(3;9)
b) Phương trình hoành độ của (d) cắt (P) là nghiệm của phương trình x2-2(m-1)x-m2+6
<=> x2-2(m-1)x+m2-6=0 (1)
<=> (m-1)2-(m2-6)=7-2m
Đường thẳng (d) cắt (P) tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có 1 nghiệm phân biệt
<=> 7-2m>0
<=> \(m< \frac{7}{2}\)(*)
Gọi x1;x2 là nghiệm của phương trình (1)
Khi đó thoe định lý Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1\cdot x_2+m^2=6\end{cases}}\)
Theo bài ra ta có: \(x_1^2+x_2^2=6\Leftrightarrow x_1+x_2^2+2x_1x_2=16\)
\(4\left(m^2-1\right)-2\left(m^2-6\right)=16\)
<=>2m2-8m=0
<=> m=0 hoặc m=4
m=0 (tmđk (*))
m=4 (ktmđk (*))
Vậy m=0 là giá trị cần tìm
a, Thay m = -1/2 vào (d) ta được :
\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)
Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)
\(\Delta=4-4\left(-3\right)=4+12=16>0\)
\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)
Vói x = -1 thì \(y=-2+3=1\)
Vớ x = 3 thì \(y=6+3=9\)
Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )
b, mình chưa học
\(y_1+y_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)
Xét phương trình hoành độ giao điểm của (d) và (P) ta có:
\(x^2=2x-2m+2\)
\(\Leftrightarrow x^2-2x+2m-2=0\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)
Từ (1) \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow4-4m+4=8\)
\(\Leftrightarrow m=0\)
vậy..
Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình \(-\frac{1}{2}x^2=-m^2x+2-m\) (1)
để (d) cắt (P) tại 2 điểm pb A và B và nằm khác phía với trục tung<=> phương trình (1) hay -x2 +2m2x + 2m - 4 = 0 có 2 nghiệm pb xA; xB trái dấu
<=> a.c < 0 <=> 4 - 2m < 0 <=> m > 2. Khi đó pt trên có 2 nghiệm xA; xB . Theo Vi -et ta có:
xA + xB = 2m2; xA xB = 4- 2m
để xA; xB thoả mãn (xA + 1)(xB + 1) = 17 <=> xA xB + xA + xB + 1 = 17
<=> (4 -2m) + 2m2 + 1 = 17 <=> 2m2 - 2m-12 = 0 <=> m2 - m - 6 = 0 => m = 3; -2
Đối chiếu đk => m = 3
Vậy.............
để (d) song song zới đường thẳng (d')
=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)
b)phương trình hoành độ giao điểm của (d) zà (P)
\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)
ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)
để d cắt P tại hai điểm phân biệt
=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)
lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)
để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)
từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương
Xét pt tọa độ giao điểm:
X²=(m+4)x-2m-5
<=> -x²+(m+4)x-2m-5
a=-1. b= m+4. c=2m-5
Để pt có 2 No pb =>∆>0
=> (m+4)²-4×(-1)×2m-5>0
=> m² +2×m×4+16 +8m-20>0
=> m²+9m -2>0
=> x<-9 và x>0
y1=y2
=>x^2-5x+m+3=0
giải hệ ra