Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Đường thẳng( d1 ) : y = -mx + m + 1 có a1 = -m
Đường thẳng ( d2 ) : y =\(\frac{1}{m}x-1-\frac{5}{m}\)có a2 = \(\frac{1}{m}\)
Ta có : a1.a2 = ( -m ) . \(\frac{1}{m}\)=-1 .Vậy ( d1 ) và ( d2 ) vuông góc với nhau với mọi giá trị của tham số m khác 0 => đpcm
Gọi A là giao điểm
Pt hoành độ giao điểm:
\(3x_A-m-1=2x_A+m-1\Rightarrow x_A=2m\)
\(\Rightarrow\) Tung độ giao điểm: \(y_A=5m-1\)
\(\Rightarrow y_A=\dfrac{5}{2}.2m-1=\dfrac{5}{2}x_A-1\)
\(\Rightarrow\)Giao điểm của d1 và d2 luôn thuộc đường thẳng cố định: \(y=\dfrac{5}{2}x-1\)
a, - Để 2 đường thẳng trên vuông góc với nhau thì :
\(\frac{1}{m}.\left(-m\right)=-1\)
=> \(-1=-1\) ( luôn đúng với mọi m, \(m\ne0\) )
Vậy (d1 ) và (d2 ) luôn vuông góc với nhau với mọi giá trị m ≠ 0 .
b, - Gỉa sử đường thẳng (d1 ) luôn đi qua điểm \(A\left(x_0,y_0\right)\) với mọi \(m\ne0\)
=> \(y_0=-mx_0+m+1\)
=> \(y_0-1=m\left(1-x_0\right)\)
=> \(\left\{{}\begin{matrix}y_0-1=0\\1-x_0=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x_0=1\\y_0=1\end{matrix}\right.\)
Vậy điểm cố định (d1) luôn đi qua là điểm ( 1, 1 ) .
Nguyễn Ngọc Lộc ?Amanda?Nguyễn Lê Phước ThịnhPhạm Lan HươngTrần Quốc KhanhAkai HarumaHoàng Thị Ánh Phương Trên con đường thành công không có dấu chân của kẻ lười biếngTrung NguyenHy MinhKhánh LinhVũ Minh Tuấn@Mysterious Person giúp e với e cảm ơn trc
b: y=mx-2x+3
Điểm mà (d) luôn đi qua có tọa độ là:
x=0 và y=-2*0+3=3
Pt hoành độ giao điểm:
\(3x-m-1=2x+m-1\Rightarrow\left\{{}\begin{matrix}x=2m\\y=5m-1\end{matrix}\right.\)
\(\Rightarrow y-\frac{5}{2}x=5m-1-\frac{5}{2}.2m=-1\)
\(\Rightarrow y=\frac{5}{2}x-1\)
Vậy giao điểm của 2 đường thẳng luôn nằm trên đường thẳng \(y=\frac{5}{2}x-1\)
1: (d1); a=-m; b=m-1
(d2); a=1/m; b=-5/m-2
Vì \(a_1\cdot a_2=-1\) nên (d1) vuông góc với (d2)