\(x^2\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 3 2019

Phương trình hoành độ giao điểm:

\(2x^2-nx-1=0\)

\(ac=-2< 0\Rightarrow\) phương trình luôn có 2 nghiệm pb trái dấu \(\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt có hoành độ thỏa mãn: \(\left\{{}\begin{matrix}x_1+x_2=\frac{n}{2}\\x_1x_2=\frac{-1}{2}\end{matrix}\right.\)

Do M, N thuộc (P) \(\Rightarrow\left\{{}\begin{matrix}y_1=2x^2_1\\y_2=2x_2^2\end{matrix}\right.\) \(\Rightarrow y_1y_2=4\left(x_1x_2\right)^2\)

\(S=x_1x_2+y_1y_2=\frac{-1}{2}+4\left(-\frac{1}{2}\right)^2=\frac{-1}{2}+1=\frac{1}{2}\)

22 tháng 5 2017
  1. a) Thay x=-1;y=3 vào (d) ta có: 3=(m+2)-1-m+6   <=>-m-2-m+6=3  <=>-2m=-1  <=>m=1/2.
15 tháng 4 2017

Bài này giải như số ý, kết luận khác chút.

Phương trình hoành độ giao điểm của (P) và (d) là:

     \(x^2=\left(k-1\right)x+4\)

\(\Leftrightarrow x^2-\left(k-1\right)x-4=0\)

( a = 1; b = - (k-1); c = -4 )

\(\Delta=b^2-4ac\)     

    \(=\left[-\left(k-1\right)\right]^2-4.1.\left(-4\right)\)

    \(=\left(k-1\right)^2+16>0\forall k\)

Vậy: (P) và (d) luôn cắt nhau tại 2 điểm phân biệt

Theo Vi-et ta có: \(\hept{\begin{cases}S=y_1+y_2=-\frac{b}{a}=k-1\\P=y_1y_2=\frac{c}{a}=-4\end{cases}}\)

Ta có: \(y_1+y_2=y_1y_2\)

     \(\Leftrightarrow S=P\)

     \(\Leftrightarrow k-1=-4\)

      \(\Leftrightarrow k=-3\left(TMĐK\right)\)

Vậy: k = -3 là giá trị cần tìm

     

15 tháng 4 2017

Mơn b, Vũ Như Mai

7 tháng 2 2022

xin lỗi mình chưa đọc chỗ parabol ,sửa dòng 8 dưới lên nhé 

\(x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)

\(\Leftrightarrow\frac{1}{2}x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

\(\Leftrightarrow\frac{1}{2}\left(2m-2\right)\left[16-2\left(2m-2\right)\right]+48=0\)

\(\Leftrightarrow\left(m-1\right)\left(20-4m\right)+48=0\Leftrightarrow-4m^2+20m-20+4m+48=0\)

\(\Leftrightarrow-4m^2+24m+28=0\Leftrightarrow m^2-6m-7=0\)

Ta có : a - b + c = 1 + 6 - 7 = 0 

vậy pt có nghiệm x = -1 ; x = 7 

7 tháng 2 2022

a) vì A(-1; 3) thuộc (d) nên:

3 = 2.(-1) - a + 1

<=> 3 = -2 - a + 1

<=> a = 4

b) Lập phương trình hoành độ giao điểm: 

\(2x-a+1=\frac{1}{2}x^2\)

\(\Leftrightarrow\frac{1}{2}x^2-2x+a-1=0\)

ta có: \(y_1=\frac{1}{2}x_1^2\)

         \(y_2=\frac{1}{2}x_2^2\)

\(\Leftrightarrow x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)

\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1^2+x_2^2\right)\right]+48=0\)

\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

Theo định lý viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=\frac{a-1}{2}\end{cases}}\)

\(\Leftrightarrow\left(\frac{a-1}{2}\right)\left[\frac{1}{2}\cdot4^2-2\left(\frac{a-1}{2}\right)\right]+48=0\)

\(\Leftrightarrow10a-a^2+87=0\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=5-4\sqrt{7}\\x_2=5+4\sqrt{7}\end{cases}}\)

24 tháng 5 2021

a, Thay m = -1/2 vào (d) ta được : 

\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)

Hoành độ giao điểm thỏa mãn phương trình 

\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)

\(\Delta=4-4\left(-3\right)=4+12=16>0\)

\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)

Vói x = -1 thì \(y=-2+3=1\)

Vớ x = 3 thì \(y=6+3=9\)

Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )

b, mình chưa học 

24 tháng 5 2021

\(y_1+y_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)

Xét phương trình hoành độ giao điểm của (d) và (P) ta có: 

\(x^2=2x-2m+2\)

\(\Leftrightarrow x^2-2x+2m-2=0\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)

Từ (1)  \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow4-4m+4=8\)

\(\Leftrightarrow m=0\)

vậy..

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

PT hoành độ giao điểm:

\(\frac{1}{2}x^2-(2x-m+1)=0\)

\(\Leftrightarrow x^2-4x+2m-2=0(*)\)

Để (P) cắt (d) tại 2 điểm phân biệt thì $(*)$ phải có 2 nghiệm phân biệt.

Điều này xảy ra khi \(\Delta'=4-(2m-2)>0\Leftrightarrow m< 3\)

Khi đó, $x_1,x_2$ sẽ là 2 nghiệm của $(*)$ thỏa mãn:

\(\left\{\begin{matrix} x_1+x_2=4\\ x_1x_2=2m-2\end{matrix}\right.\) (định lý Vi-et)

Ta có:

\(x_1x_2(y_1+y_2)+48=0\)

\(\Leftrightarrow x_1x_2(2x_1-m+1+2x_2-m+1)+48=0\)

\(\Leftrightarrow x_1x_2(x_1+x_2-m+1)+24=0\)

\(\Leftrightarrow (2m-2)(4-m+1)+24=0\)

\(\Leftrightarrow -m^2+6m+7=0\Rightarrow m=7; m=-1\). Kết hợp với đk $m< 3$ suy ra $m=-1$

13 tháng 5 2018

a.

pthdgd

x^2-mx-2=0

∆=m^2+2>o moi m

c/a=-2<0

=>x1<0<x2 moi m => dpcm