\(A\left(1;2\right);B\left(-2;4\right);C\left(2;m\right)\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

\(\overrightarrow{AB}\left(-3;2\right)\); \(\overrightarrow{AC}\left(1;m-2\right)\).
Ba điểm A, B, C thẳng hàng khi và chỉ khi:
\(\dfrac{1}{-3}=\dfrac{m-2}{2}\Leftrightarrow-3\left(m-2\right)=2\)\(\Leftrightarrow m=\dfrac{4}{3}\).

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

1, Trong mặt phẳng tọa độ Oxy , cho B(2;3) , C (-1 ; 2) . Điểm M thỏa mãn \(2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\) . Tọa độ điểm M là ? 2. Cho \(\overrightarrow{a}=\left(1;2\right)\) và \(\overrightarrow{b}=\left(3;4\right)\) Vecto \(\overrightarrow{m}=2\overrightarrow{a}+3\overrightarrow{b}\) có tọa độ là ? 3. Cho A(3;-2) , B (-5;4 ) và C \(\left(\frac{1}{3};0\right)\). Ta có \(\overrightarrow{AB}=x\overrightarrow{AC}\) tìm giá trị...
Đọc tiếp

1, Trong mặt phẳng tọa độ Oxy , cho B(2;3) , C (-1 ; 2) . Điểm M thỏa mãn \(2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\) . Tọa độ điểm M là ?
2. Cho \(\overrightarrow{a}=\left(1;2\right)\)\(\overrightarrow{b}=\left(3;4\right)\) Vecto \(\overrightarrow{m}=2\overrightarrow{a}+3\overrightarrow{b}\) có tọa độ là ?

3. Cho A(3;-2) , B (-5;4 ) và C \(\left(\frac{1}{3};0\right)\). Ta có \(\overrightarrow{AB}=x\overrightarrow{AC}\) tìm giá trị của x

4, Trên trục x'Ox cho 2 điểm A,B lân lượt có tọa dộ là a, b. M là điểm thỏa mãn \(\overrightarrow{MA}=k\overrightarrow{MB},k\ne1\). Khi đó tọa độ điểm M là

5, Trong mặt phẳng Oxy , cho \(\overrightarrow{a}=\left(2,1\right);\overrightarrow{b}=\left(3,4\right);\overrightarrow{c}=\left(7,2\right)\)Tìm m,n để A,B,C thẳng hàng
*Minh mới học phần này cũng chưa hiểu lắm nên các bạn giải kĩ giúp mình. Cảm ơn nhiều <3

2
18 tháng 8 2019

Hok nhanh phết, chưa j đã đến phần toạ độ vecto r

1/ \(\overrightarrow{MB}=\left(x_B-x_M;y_B-y_M\right)=\left(2-x_M;3-y_M\right)\)

\(\Rightarrow2\overrightarrow{MB}=\left(4-2x_M;6-2y_M\right)\)

\(\overrightarrow{3MC}=\left(3x_C-3x_M;3y_C-3y_M\right)=\left(-3-3x_M;6-3y_M\right)\)

\(\Rightarrow2\overrightarrow{MB}+3\overrightarrow{MC}=\left(4-2x_M-3-3x_M;6-2y_M+6-3y_M\right)=0\)

\(\Leftrightarrow\left(1-5x_M;12-5y_M\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-5x_M=0\\12-5y_M=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=\frac{1}{5}\\y_M=\frac{12}{5}\end{matrix}\right.\Rightarrow M\left(\frac{1}{5};\frac{12}{5}\right)\)

18 tháng 8 2019

2/ \(\overrightarrow{m}=2\left(1;2\right)+3\left(3;4\right)=\left(2+9;4+12\right)=\left(11;16\right)\)

3/ \(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-5-3;4+2\right)=\left(-8;6\right)\)

\(\overrightarrow{AC}=\left(x_C-x_A;y_C-y_A\right)=\left(\frac{1}{3}-3;0+2\right)=\left(-\frac{8}{3};2\right)\)

\(\Rightarrow x=\frac{\overrightarrow{AB}}{\overrightarrow{AC}}=\frac{\left(-8;6\right)}{\left(-\frac{8}{3};2\right)}=3\)

Câu 4 tương tự

Câu 5 vt lại đề bài nhé bn, nghe nó vô lý sao á, m,n ở đâu ra vậy, cả A,B,C nx

18 tháng 5 2017

a)Gọi \(D\left(x;y\right)\) là tọa độ điểm cần tìm.
\(\overrightarrow{AD}\left(x-2;y-4\right)\); \(\overrightarrow{BC}\left(2;-4\right)\).
Tứ giác ABCD là hình bình hành khi và chỉ khi:
\(\overrightarrow{AD}=\overrightarrow{BC}\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=2\\y-4=-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)\(\Rightarrow D\left(4;0\right)\).
b) Gọi\(A'\left(x;y\right)\) là điểm cần tìm. A' thỏa mãn hai điều sau:
- \(AA'\perp BC\). (1)
- A' , B, C thẳng hàng. (2)
\(\overrightarrow{AA'}\left(x-2;y-4\right)\); \(\overrightarrow{BC}\left(2;-4\right)\).
\(\left(1\right)\Leftrightarrow\overrightarrow{AA'}.\overrightarrow{BC}=\overrightarrow{0}\)\(\Leftrightarrow2\left(x-2\right)-4\left(y-4\right)=0\) (3)
(2) suy ra hai véc tơ \(\overrightarrow{A'B}\)\(\overrightarrow{BC}\) cùng phương.
\(\overrightarrow{A'B}\left(1-x;3-y\right)\).
Nên \(\dfrac{1-x}{2}=\dfrac{3-y}{4}\) (4)
Từ (3) và (4) suy ra: \(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\).
Vậy A'(1;3).

8 tháng 4 2017

AC đi qua A(1;2) và có VTPT nAC = vec-tơ BH = ( 1;2)
=> AC: 1(x-1) + 2(y-2)=0 <=> x+2y -5=0
BC đi qua B(-3;1) và có VTPT nBC = vec-tơ AH = (-3;1)
=>BC : -3(x+3) + (y-1)=0 <=> -3x + y -10 =0
C là giao điểm của AC và BC nên là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x+2y-5=0\\-3x+y-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{15}{7}\\y=\dfrac{25}{7}\end{matrix}\right.\)
Vậy \(C\left(-\dfrac{15}{7};\dfrac{25}{7}\right)\)

17 tháng 4 2017

Chú ý sử dụng các công thức toán học có sẵn.

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

11 tháng 4 2016

Tọa độ điểm A, B là nghiệm của hệ phương trình :

\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\)   \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)

                                            \(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)

Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC

Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)

            \(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)

Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)

19 tháng 5 2017

\(\left(x,y\right)\) là tâm đường tròn ngoại tiếp tam giác ABC

\(\Leftrightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=\left(x-2\right)^2+y^2\\\left(x+1\right)^2+\left(y-2\right)^2=\left(x+3\right)^2+\left(y-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-4y=-1\\4x+2y=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{11}{14}\\y=-\dfrac{13}{14}\end{matrix}\right.\)

Vậy \(I\left(-\dfrac{11}{14};-\dfrac{13}{14}\right)\)