K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

a,

\(D\left(x;y\right)\rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;1\right)\\\overrightarrow{DC}=\left(2-x;-4-y\right)\end{matrix}\right.\)

\(\Rightarrow\) ABCD là hình bình hành

\(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\rightarrow\left(4;1\right)=\left(2-x;-4-y\right)\)

\(\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)

\(\rightarrow D=\left(-2;-5\right)\)

b. \(AB=CD=\sqrt{4^2+1^2=\sqrt{17}}\)

\(AD=BC=\sqrt{\left(2-1\right)^2+\left(-4-1\right)^2}=\sqrt{37}\)

\(\rightarrow P_{ABCD}=2\sqrt{17}+2\sqrt{37}\)

Gọi pt đường thẳng đi qua A và B là y=ax+b

Nên ta có hệ pt:

\(\left\{{}\begin{matrix}1=-3a+b\\2=a+b\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}a=\frac{1}{4}\\b=\frac{7}{4}\end{matrix}\right.\)

\(\rightarrow AB:y=\frac{1}{4}x+\frac{7}{4}hay:x-47+7=0\)

\(d_{D-AB}=\frac{|2-4.\left(-5\right)+7|}{\sqrt{1^2+\left(-4\right)^2}}=\frac{25}{\sqrt{17}}\)

\(S_{ABCD}=AB.d_{D-AB}=\sqrt{17}.\frac{25}{\sqrt{17}}=25\)

I là trọng tâm của ΔABC

=>\(\left\{{}\begin{matrix}x_A+x_B+x_C=3\cdot x_I\\y_A+y_B+y_C=3\cdot y_I\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3+\left(-1\right)+x_C=3\cdot1=3\\-1+2+y_C=3\cdot1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_C=3-2=1\\y_C=3-1=2\end{matrix}\right.\)

Vậy: C(1;2)

Ta có: A(3;-1); B(-1;2); C(1;2); D(x;y)

=>\(\overrightarrow{AB}=\left(-4;3\right);\overrightarrow{DC}=\left(1-x;2-y\right)\)

ABCD là hình bình hành

=>\(\overrightarrow{AB}=\overrightarrow{DC}\)

=>\(\left\{{}\begin{matrix}1-x=-4\\2-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)

Vậy: D(5;-1)

Tâm O của hình bình hành ABCD sẽ là trung điểm của AC

A(3;-1); C(1;2); O(x;y)

=>\(\left\{{}\begin{matrix}x=\dfrac{3+1}{2}=\dfrac{4}{2}=2\\y=\dfrac{-1+2}{2}=\dfrac{1}{2}\end{matrix}\right.\)

NV
4 tháng 1 2024

Áp dụng công thức trọng tâm:

\(\left\{{}\begin{matrix}x_A+x_B+x_C=3x_I\\y_A+y_B+y_C=3y_I\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=3x_I-\left(x_A+x_B\right)=1\\y_C=3y_I-\left(y_A+y_B\right)=2\end{matrix}\right.\)

\(\Rightarrow C\left(1;2\right)\)

Đặt tọa độ D là \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-4;3\right)\\\overrightarrow{DC}=\left(1-x;2-y\right)\end{matrix}\right.\)

ABCD là hình bình hành \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}1-x=-4\\2-y=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\) \(\Rightarrow D\left(5;-1\right)\)

Tâm O hình bình hành là trung điểm đường chéo AC nên áp dụng công thức trung điểm:

\(\left\{{}\begin{matrix}x_O=\dfrac{x_A+x_C}{2}=2\\y_O=\dfrac{y_A+y_C}{2}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow O\left(2;\dfrac{1}{2}\right)\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Gọi \(C\left( {a;b} \right),D\left( {m,n} \right) \Rightarrow \overrightarrow {IC}  = \left( {a - 4,b - 2} \right)\) và \(\overrightarrow {ID}  = \left( {m - 4,n - 2} \right)\)

Do I là tâm của hình bình hành ABCD nên I là trung điểm AC và BD.

Vậy ta có:\(\overrightarrow {AI}  = \overrightarrow {IC} \)và \(\overrightarrow {BI}  = \overrightarrow {ID} \)

Ta có: \(\overrightarrow {AI}  = \left( {7;1} \right)\) và \(\overrightarrow {BI}  = \left( {5; - 1} \right)\)

Do \(\overrightarrow {AI}  = \overrightarrow {IC}  \Leftrightarrow \left\{ \begin{array}{l}7 = a - 4\\1 = b - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 11\\b = 3\end{array} \right.\) .Vậy \(C\left( {11;3} \right)\)

Do \(\overrightarrow {BI}  = \overrightarrow {ID}  \Leftrightarrow \left\{ \begin{array}{l}5 = m - 4\\ - 1 = n - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 9\\n = 1\end{array} \right.\). Vậy \(D\left( {9;1} \right)\)

NV
17 tháng 1 2024

a.

Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-5;-1\right)\\\overrightarrow{DC}=\left(3-x;-2-y\right)\end{matrix}\right.\)

Do ABCD là hình bình hành \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}3-x=-5\\-2-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)

\(\Rightarrow D\left(8;-1\right)\)

Gọi O là tâm hình bình hành \(\Rightarrow\) O là trung điểm AC

Theo công thúc trung điểm:

\(\left\{{}\begin{matrix}x_O=\dfrac{x_A+x_C}{2}=\dfrac{7}{2}\\y_O=\dfrac{y_A+y_C}{2}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow O\left(\dfrac{7}{2};\dfrac{1}{2}\right)\)

b.

Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=1\end{matrix}\right.\)

\(\Rightarrow G\left(2;1\right)\)

I đối xứng B qua G \(\Rightarrow G\)  là trung điểm IB

\(\Rightarrow\left\{{}\begin{matrix}x_I=2x_G-x_B=5\\y_I=2y_G-y_B=0\end{matrix}\right.\) \(\Rightarrow I\left(5;0\right)\)

\(\left\{{}\begin{matrix}\dfrac{x_A+x_D+x_C}{3}=5=x_I\\\dfrac{y_A+y_D+y_C}{3}=0=y_I\end{matrix}\right.\) \(\Rightarrow I\) là trọng tâm ADC

c.

Ta có: \(S_{ABC}=\dfrac{1}{2}AB.d\left(C;AB\right)\)

\(S_{ABM}=\dfrac{1}{2}AB.d\left(M;AB\right)\)

\(S_{ABC}=3S_{ABM}\Rightarrow d\left(C;AB\right)=3d\left(M;AB\right)\)

\(\Rightarrow BM=\dfrac{1}{3}BC\)

\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{BM}=\dfrac{1}{3}\overrightarrow{BC}\\\overrightarrow{BM}=-\dfrac{1}{3}\overrightarrow{BC}\end{matrix}\right.\)

Gọi \(M\left(x;y\right)\Rightarrow\overrightarrow{BM}=\left(x+1;y-2\right)\)

\(\Rightarrow\left[{}\begin{matrix}\left(x+1;y-2\right)=\dfrac{1}{3}\left(4;-4\right)\\\left(x+1;y-2\right)=-\dfrac{1}{3}\left(4;-4\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(x;y\right)=\left(\dfrac{1}{3};\dfrac{2}{3}\right)\\\left(x;y\right)=\left(-\dfrac{7}{3};\dfrac{10}{3}\right)\end{matrix}\right.\)

7 tháng 11 2019

Đáp án B

17 tháng 12 2023

 Gợi ý thôi nhé.

a) Có \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{\left(\left(-1\right)-6\right)^2+\left(2-\left(-1\right)\right)^2}=\sqrt{58}\)

Tương tự như vậy, ta tính được AC, BC. 

 Tính góc: Dùng \(\cos A=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}\)

b) Chu vi thì bạn lấy 3 cạnh cộng lại.

 Diện tích: Dùng \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)

c) Gọi \(H\left(x_H,y_H\right)\) là trực tâm thì \(\left\{{}\begin{matrix}AH\perp BC\\BH\perp AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)

 Sau đó dùng: \(\overrightarrow{u}\left(x_1,y_1\right);\overrightarrow{v}\left(x_2,y_2\right)\) thì \(\overrightarrow{u}.\overrightarrow{v}=x_1x_2+y_1y_2\) để lập hệ phương trình tìm \(x_H,y_H\)

Trọng tâm: Gọi \(G\left(x_G,y_G\right)\) là trọng tâm và M là trung điểm BC. Dùng \(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}\\y_M=\dfrac{y_B+y_C}{2}\end{matrix}\right.\) để tìm tọa độ M. 

 Dùng \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\) để lập hpt tìm tọa độ G.

17 tháng 12 2023

Bài gì vậy ạ?

NV
2 tháng 12 2021

Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-3;-1\right)\\\overrightarrow{DC}=\left(5-x;1-y\right)\end{matrix}\right.\)

ABCD là hình bình hành \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}5-x=-3\\1-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=2\end{matrix}\right.\)

\(\Rightarrow D\left(8;2\right)\)

2 tháng 12 2021

Em cảm ơn ạ

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có: \(\overrightarrow {BC}  = \left( { - 7;1} \right),\overrightarrow {BA}  = \left( {3;3} \right)\)

\(\cos \widehat {ABC} = \left( {\overrightarrow {BC} ,\overrightarrow {BA} } \right) = \frac{{\left( { - 7} \right).3 + 1.3}}{{\sqrt {{{\left( { - 7} \right)}^2} + {1^2}} .\sqrt {{3^2} + {3^2}} }} =  - \frac{3}{5} \Rightarrow \widehat {ABC} \approx {126^o}\)

b) Ta có: \(\overrightarrow {BC}  = \left( { - 7;1} \right),\overrightarrow {BA}  = \left( {3;3} \right),\overrightarrow {AC}  = \left( { - 10; - 2} \right)\)

Suy ra: \(\begin{array}{l}AB = \left| {\overrightarrow {BA} } \right| = \sqrt {{3^2} + {3^2}}  = 3\sqrt 2 \\AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{{\left( { - 10} \right)}^2} + {{\left( { - 2} \right)}^2}}  = \sqrt {104} \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { - 7} \right)}^2} + {1^2}}  = \sqrt {50} \end{array}\)

Vậy chu vi tam giác ABC là: \({P_{ABC}} = 2\sqrt {26}  + 8\sqrt 2 \)

c) Để diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM thì M phải là trung điểm BC.

Vậy tọa độ điểm M là: \(\left\{ \begin{array}{l}\frac{{{x_B} + {x_C}}}{2} = \frac{{ - 9}}{2}\\\frac{{{y_B} + {y_C}}}{2} = \frac{3}{2}\end{array} \right.\). Vậy \(M\left( {\frac{{ - 9}}{2};\frac{3}{2}} \right)\)

NV
22 tháng 3 2022

Gọi E(x;y) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;-2\right)\\\overrightarrow{EC}=\left(3-x;3-y\right)\end{matrix}\right.\)

Tứ giác ABCE là hbh khi \(\overrightarrow{AB}=\overrightarrow{EC}\)

\(\Leftrightarrow\left\{{}\begin{matrix}3-x=1\\3-y=-2\end{matrix}\right.\) \(\Rightarrow E\left(2;5\right)\)