K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Ta có: \(\overrightarrow {{u_{BC}}}  = \overrightarrow {BC}  = \left( { - 5; - 3} \right) \Rightarrow \overrightarrow {{n_{BC}}}  = \left( {3; - 5} \right)\) . Vậy phương trình tổng quát của đường thẳng BC là: \(3\left( {x - 3} \right) - 5\left( {y - 2} \right) = 0 \Leftrightarrow 3x - 5y + 1 = 0\).

Độ dài đường cao AK của tam giác \(ABC\) hạ từ đỉnh A là: \(AK = d\left( {A,BC} \right) = \frac{{\left| {3.1 - 0.5 + 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 5} \right)}^2}} }} = \frac{4}{{\sqrt {34} }}\)

b) Ta có: \(\overrightarrow {BC}  = \left( { - 5; - 3} \right) \Rightarrow BC = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 3} \right)}^2}}  = \sqrt {34} \)

Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}.AK.BC = \frac{1}{2}.\frac{4}{{\sqrt {34} }}.\sqrt {34}  = 2\)

17 tháng 12 2023

 Gợi ý thôi nhé.

a) Có \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{\left(\left(-1\right)-6\right)^2+\left(2-\left(-1\right)\right)^2}=\sqrt{58}\)

Tương tự như vậy, ta tính được AC, BC. 

 Tính góc: Dùng \(\cos A=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}\)

b) Chu vi thì bạn lấy 3 cạnh cộng lại.

 Diện tích: Dùng \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)

c) Gọi \(H\left(x_H,y_H\right)\) là trực tâm thì \(\left\{{}\begin{matrix}AH\perp BC\\BH\perp AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)

 Sau đó dùng: \(\overrightarrow{u}\left(x_1,y_1\right);\overrightarrow{v}\left(x_2,y_2\right)\) thì \(\overrightarrow{u}.\overrightarrow{v}=x_1x_2+y_1y_2\) để lập hệ phương trình tìm \(x_H,y_H\)

Trọng tâm: Gọi \(G\left(x_G,y_G\right)\) là trọng tâm và M là trung điểm BC. Dùng \(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}\\y_M=\dfrac{y_B+y_C}{2}\end{matrix}\right.\) để tìm tọa độ M. 

 Dùng \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\) để lập hpt tìm tọa độ G.

17 tháng 12 2023

Bài gì vậy ạ?

1: \(\overrightarrow{AB}=\left(-10;-5\right)\)

\(\overrightarrow{AC}=\left(-6;3\right)\)

\(\overrightarrow{BC}=\left(4;8\right)\)

Vì \(\overrightarrow{AC}\cdot\overrightarrow{BC}=0\) ΔABC vuông tại C

\(AC=\sqrt{\left(-6\right)^2+3^2}=3\sqrt{5}\)

\(BC=\sqrt{4^2+8^2}=4\sqrt{5}\)

Do đó: \(S_{ABC}=\dfrac{AC\cdot BC}{2}=\dfrac{3\sqrt{5}\cdot4\sqrt{5}}{2}=3\sqrt{5}\cdot2\sqrt{5}=30\)

 

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Đường cao kẻ từ A  của tam giác ABC là đường thẳng đi qua A và có vectơ pháp tuyến là \(\overrightarrow {BC}  = \left( { - 5; - 1} \right)\) nên phương trình đường cao đó là:

\( - 5\left( {x - 1} \right) - 1\left( {y - 2} \right) =  0 \Leftrightarrow -5x - y + 7 = 0\)

Hay   \(   5x + y - 7 = 0\)

b) Gọi M là trung điểm AC. Khi đó \(\left\{ \begin{array}{l}{x_M} = \frac{{{x_A} + {x_C}}}{2} = \frac{{1 + \left( { - 2} \right)}}{2} =  - \frac{1}{2}\\{y_M} = \frac{{{y_A} + {y_C}}}{2} = \frac{{2 + \left( { - 1} \right)}}{2} = \frac{1}{2}\end{array} \right. \Rightarrow M\left( { - \frac{1}{2};\frac{1}{2}} \right)\)

Trung tuyến BM đi qua điểm \(B\left( {3;0} \right)\) nhận vectơ \(\overrightarrow {{u_{BM}}}  = 2\overrightarrow {BM}  = \left( { - 7;1} \right)\) là vectơ chỉ phương  nên phương trình tham số của BM là \(\left\{ \begin{array}{l}x = 3 - 7t\\y = t\end{array} \right.\).

18 tháng 9 2018

Gọi A ' x ; y . Ta có  A A ' → = x − 4 ; y − 3 B C → = −   5 ; −   15 B A ' → = x − 2 ; y − 7 .

Từ giả thiết, ta có  A A ' ⊥ B C B ,   A ' ,   C  thang hang ⇔ A A ' → . B C → = 0 1 B A ' → = k B C → 2 .

  1 ⇔ −   5 x − 4 − 15 y − 3 = 0 ⇔ x + 3 y = 13.  

  2 ⇔ x − 2 − 5 = y − 7 − 15 ⇔ 3 x − y = − 1.

Giải hệ x + 3 y = 13 3 x − y = −   1 ⇔ x = 1 y = 4    ⇒    A ' 1 ; 4 .  

Chọn C.

24 tháng 1 2017

Gọi A’ (x; y).

Ta có  A A ' → = x − 4 ; y − 3 B C → = −   5 ; −   15 B A ' → = x − 2 ; y − 7 .

Từ giả thiết, ta có  A A ' ⊥ B C B ,   A ' ,   C  thang hang ⇔ A A ' → . B C → = 0 1 B A ' → = k B C → 2 .

  1 ⇔ −   5 x − 4 − 15 y − 3 = 0 ⇔ x + 3 y = 13.  

  2 ⇔ x − 2 − 5 = y − 7 − 15 ⇔ 3 x − y = − 1.

Giải hệ x + 3 y = 13 3 x − y = −   1 ⇔ x = 1 y = 4    ⇒    A ' 1 ; 4 .  

Chọn C

19 tháng 12 2015

\(AB^2=\left(1+1\right)^2+\left(2-0\right)^2=8\)

\(AC^2=\left(5+1\right)^2+\left(-2-0\right)^2=39\)

\(BC^2=\left(5-1\right)^2+\left(-2-2\right)^2=32\)

Cạnh lớn nhất là AC, ta có:

AC2 < AB2 + BC2

=> Tam giác ABC nhọn

A B 5 1 2 -2 C D E F

Diện tích ABC= dt(CDEF) - dt(CDB) - dt(CFA) - dt(ABE) 

                     = 5.4 - 4.4/2 - 5.1/2 - 3.1/2

                      = 8

Gọi H(x,y), ta có BH vuông góc với AC => \(\overrightarrow{BH}.\overrightarrow{AC}=0\) => (x - 1).(5-0) + (y - 2)(-2 +1) = 0

=> 5x - y = 3    (1)

Phương trình đt AC là: \(\frac{y+1}{-2+1}=\frac{x-0}{5-0}\) => 5y + x = -5

Vì H thuộc AC nên  5y + x = -5    (2)

Từ (1) và (2), giải hệ pt ta có: x =5/13 và y = -14/13

Vậy H(5/13; -14/13)

23 tháng 12 2015

AB2=(1+1)2+(20)2=8

AC2=(5+1)2+(20)2=39

BC2=(51)2+(22)2=32

Cạnh lớn nhất là AC, ta có:

AC2 < AB2 + BC2

=> Tam giác ABC nhọn

AB512-2CDEF

Diện tích ABC= dt(CDEF) - dt(CDB) - dt(CFA) - dt(ABE) 

                     = 5.4 - 4.4/2 - 5.1/2 - 3.1/2

                      = 8

Gọi H(x,y), ta có BH vuông góc với AC => BH.AC=0 => (x - 1).(5-0) + (y - 2)(-2 +1) = 0

=> 5x - y = 3    (1)

Phương trình đt AC là: y+12+1=x050 => 5y + x = -5

Vì H thuộc AC nên  5y + x = -5    (2)

Từ (1) và (2), giải hệ pt ta có: x =5/13 và y = -14/13

Vậy H(5/13; -14/13)

22 tháng 3 2017

A B C M N E H

goi B(a; b) N( c; d)

\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)

N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)

2d = -3 +b (3)

B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)

tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)

dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0

tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE

\(\Rightarrow E\left(5;1\right)\). ​vì ptdt (BE) cung la ptdt qua (BC):

3x+5y-20 =0

tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)

\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)

9 tháng 7 2018