\(^2\)

a) Vẽ parabol (P)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

a.

pthdgd

x^2-mx-2=0

∆=m^2+2>o moi m

c/a=-2<0

=>x1<0<x2 moi m => dpcm

13 tháng 5 2018

xét phương trình hoành độ giao điểm của ( p ) vả ( d ) 

                    \(x^2=2\left(m+3\right)x+1-4m\)

\(< =>x^2-2\left(m+3\right)x-1+4m=0\)

ta có : ( \(a=1;b=2\left(m+3\right);b'=m+3;c=-1+4m\) )

\(\Delta'=b'^2-ac\)

\(\Delta'=\left(m+3\right)^2-1.\left(-1+4m\right)\)

\(\Delta'=m^2+2m3+3^2+1-4m\)

\(\Delta'=m^2+6m+9+1-4m\)

\(\Delta'=m^2+6m-4m+1+9\)

\(\Delta'=\left(m^2+2m.1+1^2\right)+9\)

\(\Delta'=\left(m+1\right)^2+9>0;\forall m\)

Vay :  với mọi m thì (đ) cắt (đ) tại 2 điểm phân biệt cùng nằm bên phải trục tung 

CHÚ Ý : NẾU BẠN LẤY \(\Delta'\)>  0   rồi tìm tham số m  ( là sai nha ) 

vì : bất kỳ m là số nào thì ( đ) cũng luôn cắt ( đ)  tại 2 điểm phân biệt bên phải trục tung 

( m không thuộc riêng về 1 giá trị nào hết nha )

OK CHÚC BẠN HỌC TỐT !!!! 

7 tháng 4 2016

Sử dụng định lí vi-ét ta có m=3

7 tháng 4 2016

con -2 nua ban

28 tháng 3 2020

để (d) song song zới đường thẳng (d') 

=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)

b)phương trình hoành độ giao điểm của (d) zà (P)

\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)

ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)

để d cắt P tại hai điểm phân biệt 

=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)

lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)

để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)

từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương

DD
5 tháng 6 2021

Phương trình hoành độ giao điểm (d) và (P) là: 

\(x^2=-\left(m+2\right)x-m-1\)

\(\Leftrightarrow x^2+\left(m+2\right)x+m+1=0\)(1) 

Để (d) cắt (P) tại hai điểm phân biệt thì phương trình (1) có hai nghiêm phân biệt. Khi đó: 

\(\Delta>0\Leftrightarrow\left(m+2\right)^2-4\left(m+1\right)=m^2>0\Leftrightarrow m\ne0\)

Với \(m\ne0\)phương trình (1) có hai nghiệm phân biệt \(x_1,x_2;x_1>x_2\).

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m+1\end{cases}}\)

Do hai điểm nằm khác phía với trục tung nên \(x_1,x_2\)trái dấu nên \(m+1< 0\Leftrightarrow m< -1\).

\(\sqrt{y_1}+\sqrt{y_2}=\sqrt{x_1^2}+\sqrt{x_2^2}=\left|x_1\right|+\left|x_2\right|=x_1-x_2=2\)(do hai điểm nằm khác phía với trục tung) 

\(\hept{\begin{cases}x_1+x_2=-m-2\\x_1-x_2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{-m}{2}\\x_2=\frac{-m-4}{2}\end{cases}}\)

\(x_1x_2=-\frac{m}{2}\left(\frac{-m-4}{2}\right)=\frac{m\left(m+4\right)}{4}=m+1\Leftrightarrow m=\pm2\).

Vậy \(m=-2\).

24 tháng 5 2021

a, Thay m = -1/2 vào (d) ta được : 

\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)

Hoành độ giao điểm thỏa mãn phương trình 

\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)

\(\Delta=4-4\left(-3\right)=4+12=16>0\)

\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)

Vói x = -1 thì \(y=-2+3=1\)

Vớ x = 3 thì \(y=6+3=9\)

Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )

b, mình chưa học 

24 tháng 5 2021

\(y_1+y_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)

Xét phương trình hoành độ giao điểm của (d) và (P) ta có: 

\(x^2=2x-2m+2\)

\(\Leftrightarrow x^2-2x+2m-2=0\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)

Từ (1)  \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow4-4m+4=8\)

\(\Leftrightarrow m=0\)

vậy..

7 tháng 4 2016

y1=y2

=>x^2-5x+m+3=0

  1. xét đen ta >0
  2. S>0
  3. P>0

giải hệ ra