Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AB}=\left(-3;4\right)\Rightarrow\) đường thẳng AB nhận \(\left(4;3\right)\) là 1 vtpt
Phương trình AB:
\(4\left(x-3\right)+3\left(y-1\right)=0\Leftrightarrow4x+3y-15=0\)
b.
\(R=d\left(C;AB\right)=\dfrac{\left|4.6+1.3-15\right|}{\sqrt{4^3+3^2}}=\dfrac{12}{5}\)
Phương trình (C):
\(\left(x-6\right)^2+\left(y-1\right)^2=\dfrac{144}{25}\)
Ta có: \(A\left(x_A;0\right)\) ; \(B\left(0;y_B\right)\Rightarrow\left\{{}\begin{matrix}\dfrac{x_A+0}{2}=5\\\dfrac{0+y_B}{2}=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(10;0\right)\\B\left(0;-6\right)\end{matrix}\right.\)
Phương trình d theo đoạn chắn:
\(\dfrac{x}{10}+\dfrac{y}{-6}=1\Leftrightarrow-3x+5y+30=0\)
uBC(6;0)=>nAH(0,6) ( vì AH vuông góc với BC)
PTTQ của đg thẳng AH đi qua A là
\(0\left(x-3\right)+6\left(y-0\right)=0< =>6y=0\)
b)\(d\left(C;AH\right)=R=\dfrac{\left|6.1\right|}{\sqrt[]{0^2+6^2}}=1\)
PT đg tròn tầm C tiếp xúc AH là
\(\left(x-4\right)^2+\left(y-1\right)^2=1^2\)
a. Đường thẳng Ox nhận \(\left(0;1\right)\) là 1 vtpt và đi qua O(0;0) nên có pt:
\(0\left(x-0\right)+1\left(y-0\right)=0\Leftrightarrow y=0\)
b. Đường thẳng Oy nhận (1;0) là 1 vtpt và đi qua O nên có pt:
\(1\left(x-0\right)+0\left(y-0\right)=0\Leftrightarrow x=0\)
c. Gọi \(M\left(x;y\right)\) với \(x;y>0\) là 1 điểm bất kì nằm trên phân giác góc phần tư thứ nhất
\(\Rightarrow d\left(M;Ox\right)=d\left(M;Oy\right)\Leftrightarrow\dfrac{\left|x\right|}{\sqrt{1^2+0^2}}=\dfrac{\left|y\right|}{\sqrt{1^2+0^2}}\Leftrightarrow x-y=0\)