Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(R=d\left(I;d\right)=\dfrac{\left|-2\cdot3+1\cdot\left(-4\right)\right|}{\sqrt{3^2+\left(-4\right)^2}}=2\)
Phương trình (C) là:
(x+2)^2+(y-1)^2=2^2=4
Bài 1:
a: I thuộc Δ nên I(x;-2x-3)
IA=IB
=>IA^2=IB^2
=>\(\left(x+5\right)^2+\left(-2x-3-1\right)^2=\left(x+2\right)^2+\left(-2x-3-4\right)^2\)
=>x^2+10x+25+4x^2+16x+16=x^2+4x+4+4x^2+28x+49
=>26x+41=32x+53
=>-6x=-12
=>x=2
=>I(2;-7): R=IA=căn 113
Phương trình (C) là:
(x-2)^2+(y+7)^2=113
2: vecto IA=(7;-8)
Phương trình tiếp tuyến là:
7(x+5)+(-8)(y-1)=0
=>7x+35-8y+8=0
=>7x-8y+43=0
Bài 2:
Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)
a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?
Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\) và \(\Delta_2\) với đường tròn?
b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?
Bài 1b/
\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt
Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)
\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\) và \(\left(1;3\right)\)
TH1: d' có pt dạng \(3x-y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)
TH2: d' có dạng \(x+3y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)
Gọi R là bán kính của đường tròn (C)
(C) và C1 tiếp xúc ngoài với nhau, cho ta:
MF1 = R1+ R (1)
(C) và C2 tiếp xúc ngoài với nhau, cho ta:
MF2 = R2 – R (2)
Từ (1) VÀ (2) ta được
MF1 + MF2 = R1+ R2= R không đổi
Điểm M có tổng các khoảng cách MF1 + MF2 đến hai điểm cố định F1 và F2 bằng một độ dài không đổi R1+ R2
Vậy tập hợp điểm M là đường elip, có các tiêu điểm F1 và F2 và có tiêu cự
F1 .F2 = R1+ R2
Câu 3:
Chắc pt đường tròn là \(\left(x-2\right)^2+\left(y+\frac{3}{2}\right)^2=25\)
Gọi d là đường thẳng qua M. Đường tròn tâm \(I\left(2;-\frac{3}{2}\right)\)
Áp dụng định lý Pitago:
\(d\left(I;d\right)=\sqrt{5^2-\left(\frac{8}{2}\right)^2}=3\)
Phương trình d qua M có dạng:
\(a\left(x+1\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+a-3b=0\)
Theo công thức khoảng cách:
\(d\left(I;d\right)=\frac{\left|2a-\frac{3}{2}b+a-3b\right|}{\sqrt{a^2+b^2}}=3\Leftrightarrow\left|2a-3b\right|=2\sqrt{a^2+b^2}\)
\(\Leftrightarrow\left(2a-3b\right)^2=4\left(a^2+b^2\right)\Leftrightarrow5b^2-12ab=0\)
\(\Rightarrow\left[{}\begin{matrix}b=0\\5b=12a\end{matrix}\right.\)
Chọn \(b=12\Rightarrow a=5\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x+1=0\\5x+12y-31=0\end{matrix}\right.\)
Câu 2:
Gọi M là giao điểm \(d_1;d_2\Rightarrow\) tọa độ M là nghiệm:
\(\left\{{}\begin{matrix}x+y-2=0\\-x+y-3=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{1}{2};\frac{5}{2}\right)\)
Do \(d_1\) có hệ số góc \(-1\Rightarrow d_1\) tạo với chiều âm trục Ox 1 góc 45 độ
\(d_2\) có hệ số góc \(1\Rightarrow d_2\) tạo với chiều dương trục Ox 1 góc \(45^0\)
Mà \(\overrightarrow{n_{d1}}.\overrightarrow{n_{d2}}=0\Rightarrow d_1\perp d_2\)
\(\Rightarrow\) 3 giao điểm của \(d_1;d_2;Ox\) tạo thành một tam giác vuông cân tại M
\(\Rightarrow\) hai đường phân giác góc tạo bởi \(d_1\) và \(d_2\) lần lượt vuông góc với Ox và Oy
\(\Rightarrow\) Hai đường phân giác góc tạo bởi d1 và d2 lần lượt có pt là \(\left[{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{5}{2}\end{matrix}\right.\)
- TH1: tâm I của đường tròn nằm trên \(x=-\frac{1}{2}\Rightarrow I\left(-\frac{1}{2};b\right)\)
\(\Rightarrow\overrightarrow{IA}=\left(\frac{3}{2};-b\right)\Rightarrow R^2=IA^2=b^2+\frac{9}{4}\)
Mặt khác theo công thức khoảng cách:
\(d\left(I;d_1\right)=R\Rightarrow\frac{\left|-\frac{1}{2}+b-2\right|}{\sqrt{2}}=R\Rightarrow\frac{\left(b-\frac{5}{2}\right)^2}{2}=R^2\)
\(\Rightarrow b^2+\frac{9}{4}=\frac{\left(b-\frac{5}{2}\right)^2}{2}\Leftrightarrow2b^2+\frac{9}{2}-\left(b-\frac{5}{2}\right)^2=0\)
Nghiệm lại xấu nữa, bạn tự giải tiếp
TH2: tâm I của đường tròn nằm trên \(y=\frac{5}{2}\Rightarrow I\left(a;\frac{5}{2}\right)\) làm tương tự TH1
Đề bài sai
Điểm \(M\left(-5;2\right)\) không thuộc \(\Delta\) nên (C) ko thể tiếp xúc với \(\Delta\) tại M
Cảm ơn thầy đã góp ý ạ, nếu đề bài đúng thì hướng làm ra sao vậy ạ?
Vì `(C_2)` tiếp xúc với `\Delta`
`=> d ( I_2 , \Delta ) = R`
`=> [ | 2 . 3 + 1 . (-2) - 1 | ] / [ \sqrt{ 2^2 + 1^2 } ] = R`
`=> R = 3 / \sqrt{5}`
$\bullet$ Ptr đường tròn `(C_2)` có `I_2 ( 3 ; -2)` và `R = 3 / \sqrt{5}` là:
`( x - 3 )^2 + ( y + 2 )^2 = 9 / 5`