K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

18 tháng 4 2016

B A K C H(-1;1) 4x+3y-13=0 x-y+1=0

Gọi K là điểm đối xứng với H qua đường phân giác trong góc A. Khi đó K thuộc đường thẳng AC. Đường thẳng HK có phương trình \(x+y+2=0\)

Gọi I là giao điểm của HK và đường phân giác trong góc A thì I có tọa độ là nghiệm của hệ :

\(\begin{cases}x-y+2=0\\x+y+2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-2\\y=0\end{cases}\)\(\Rightarrow I\left(-2;0\right)\)

I là trung điểm HK nên suy ta \(K\left(-3;1\right)\)

Khi đó AC :\(3\left(x+3\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y+1=0\)

A có tọa độ thỏa mãn : \(\begin{cases}x-y+2=0\\3x-4y+13=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\y=7\end{cases}\)\(\Leftrightarrow A\left(5;7\right)\)

AB có phương trình : \(\frac{x+1}{6}=\frac{y+1}{8}\Leftrightarrow4x-3y+1=0\)

B có tọa độ thỏa mãn : \(\begin{cases}4x+3y-1=0\\4x-3y+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=0\\y=\frac{1}{3}\end{cases}\)\(\Rightarrow B\left(0;\frac{1}{3}\right)\)

HC có phương trình : \(3\left(x+1\right)+4\left(y+1\right)=0\Leftrightarrow30+4y+7=0\)

C có tọa độ thỏa mãn hệ phương trình :

 \(\begin{cases}3x+4y+7=0\\3x-4y+13=0\end{cases}\)\(\begin{cases}x=-\frac{10}{3}\\y=\frac{3}{4}\end{cases}\)\(\Rightarrow C\left(-\frac{10}{3};\frac{3}{4}\right)\)

7 tháng 4 2019

cho mk hs: tai sao K thuoc duong thang AC thi HK co phuong trinh nhu vay ak

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

15 tháng 5 2016

A 2 y -2 -2 4 B C x

Vì G là trọng tâm tam giác ABC, nên ta có :

\(\overrightarrow{MA}=3\overrightarrow{MG}\Leftrightarrow\left(x_A-1;y_A+1\right)=3\left(\frac{2}{3}-1;0+1\right)\Leftrightarrow\begin{cases}x_A-1=1\\y_A+1=3\end{cases}\)

                     \(\Leftrightarrow A\left(0;2\right)\)

Giả sử \(B\left(x_1;y_1\right);C\left(x_2;y_2\right)\)

Vì M là trung điểm của BC, nên ta có :

\(\begin{cases}x_1+x_2=2\\y_1+y_2=-2\end{cases}\)\(\Leftrightarrow\begin{cases}x_2=2-x_1\\y_2=-2-y_1\end{cases}\)

Vậy \(C\left(2-x_1;-2-y_1\right)\)

Ta có \(\overrightarrow{BA}=\left(-x_1;2-y_1\right);\overrightarrow{CA}=\left(x_1-2;y_1+4\right)\)

Vì \(\widehat{BAC}=90^0\) nên \(\overrightarrow{BA}.\overrightarrow{CA}=0\)

\(\Leftrightarrow-x_1\left(x_1-2\right)+9y_1+4\left(2-y_1\right)=0\)

\(\Leftrightarrow-x^2_1-y^2_1+2x_1-2y_1+8=0\)  (1)

Do AB = AC nên \(AB^2=AC^2\)

\(x^2_1+\left(y_1-2\right)^2=2\left(2-x_1\right)^2+\left(4-y_1\right)^2\)

\(\Leftrightarrow-4y_1+4=-4x_1+4+16+8y_1\)

\(\Leftrightarrow x_1=3y_1+4\)    (2)

Thay (2) vào (1) ta có : 

\(y^2_1+y_1=0\Leftrightarrow\begin{cases}y_1=0\\y_1=-2\end{cases}\)

Từ đó ta có :

\(B\left(4;0\right);C\left(-2;-2\right)\) hoặc \(B\left(-2;-2\right);C\left(4;0\right)\)

Tóm lại ta có : 

\(A\left(0;2\right);B\left(4;0\right);C\left(2;-2\right)\) là 3 đỉnh của tam giác cần tìm

(Tam giác kia vẫn là tam giác trên chỉ đổi B và C với nhau)

15 tháng 5 2016

Vì G là trọng tâm của tam giác ABC nên ta có :

\(\overrightarrow{MA}=3\overrightarrow{MG}\Leftrightarrow\left(x_A-1;y_A+1\right)=3\left(\frac{2}{3}-1;0+1\right)\Leftrightarrow\begin{cases}x_A-1=-1\\y_A+1=3\end{cases}\)

                     \(\Leftrightarrow A\left(0;2\right)\)

Ta thấy MA có hệ số góc

\(k=\frac{2-\left(-1\right)}{0-1}=-3\)

Vì \(BC\perp MA\) nên đường thẳng nối BC có hệ số góc là \(\frac{1}{3}\), do đó phương trình của nó là :

\(y=\frac{1}{3}\left(x-1\right)-1\Leftrightarrow x-3y-4=0\)

Mặt khác do :

\(MB=MC=MA=\sqrt{1^2+3^2}=\sqrt{10}\)

Vậy tọa độ của B, C thỏa mãn phương trình đường tròn tâm M, bán kính =\(\sqrt{10}\)

\(\left(x-1\right)^2+\left(y+1\right)^2=10\)

Vậy tọa độ của B, C là nghiệm của hệ phương trình :

\(\begin{cases}x-3y-4=0\\\left(x-1\right)^2+\left(y+1\right)^2=10\end{cases}\)

Giải hệ phương trình ta có các nghiệm (4;0) và (-2;2)

Vậy A(0;2);B(4;0);C(-2;-2) là 3 đỉnh của tam giác cần tìm

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

30 tháng 5 2017

Hỏi đáp Toán