\(AB=AC,\widehat{BAC}=90^0\). Biết 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

A 2 y -2 -2 4 B C x

Vì G là trọng tâm tam giác ABC, nên ta có :

\(\overrightarrow{MA}=3\overrightarrow{MG}\Leftrightarrow\left(x_A-1;y_A+1\right)=3\left(\frac{2}{3}-1;0+1\right)\Leftrightarrow\begin{cases}x_A-1=1\\y_A+1=3\end{cases}\)

                     \(\Leftrightarrow A\left(0;2\right)\)

Giả sử \(B\left(x_1;y_1\right);C\left(x_2;y_2\right)\)

Vì M là trung điểm của BC, nên ta có :

\(\begin{cases}x_1+x_2=2\\y_1+y_2=-2\end{cases}\)\(\Leftrightarrow\begin{cases}x_2=2-x_1\\y_2=-2-y_1\end{cases}\)

Vậy \(C\left(2-x_1;-2-y_1\right)\)

Ta có \(\overrightarrow{BA}=\left(-x_1;2-y_1\right);\overrightarrow{CA}=\left(x_1-2;y_1+4\right)\)

Vì \(\widehat{BAC}=90^0\) nên \(\overrightarrow{BA}.\overrightarrow{CA}=0\)

\(\Leftrightarrow-x_1\left(x_1-2\right)+9y_1+4\left(2-y_1\right)=0\)

\(\Leftrightarrow-x^2_1-y^2_1+2x_1-2y_1+8=0\)  (1)

Do AB = AC nên \(AB^2=AC^2\)

\(x^2_1+\left(y_1-2\right)^2=2\left(2-x_1\right)^2+\left(4-y_1\right)^2\)

\(\Leftrightarrow-4y_1+4=-4x_1+4+16+8y_1\)

\(\Leftrightarrow x_1=3y_1+4\)    (2)

Thay (2) vào (1) ta có : 

\(y^2_1+y_1=0\Leftrightarrow\begin{cases}y_1=0\\y_1=-2\end{cases}\)

Từ đó ta có :

\(B\left(4;0\right);C\left(-2;-2\right)\) hoặc \(B\left(-2;-2\right);C\left(4;0\right)\)

Tóm lại ta có : 

\(A\left(0;2\right);B\left(4;0\right);C\left(2;-2\right)\) là 3 đỉnh của tam giác cần tìm

(Tam giác kia vẫn là tam giác trên chỉ đổi B và C với nhau)

15 tháng 5 2016

Vì G là trọng tâm của tam giác ABC nên ta có :

\(\overrightarrow{MA}=3\overrightarrow{MG}\Leftrightarrow\left(x_A-1;y_A+1\right)=3\left(\frac{2}{3}-1;0+1\right)\Leftrightarrow\begin{cases}x_A-1=-1\\y_A+1=3\end{cases}\)

                     \(\Leftrightarrow A\left(0;2\right)\)

Ta thấy MA có hệ số góc

\(k=\frac{2-\left(-1\right)}{0-1}=-3\)

Vì \(BC\perp MA\) nên đường thẳng nối BC có hệ số góc là \(\frac{1}{3}\), do đó phương trình của nó là :

\(y=\frac{1}{3}\left(x-1\right)-1\Leftrightarrow x-3y-4=0\)

Mặt khác do :

\(MB=MC=MA=\sqrt{1^2+3^2}=\sqrt{10}\)

Vậy tọa độ của B, C thỏa mãn phương trình đường tròn tâm M, bán kính =\(\sqrt{10}\)

\(\left(x-1\right)^2+\left(y+1\right)^2=10\)

Vậy tọa độ của B, C là nghiệm của hệ phương trình :

\(\begin{cases}x-3y-4=0\\\left(x-1\right)^2+\left(y+1\right)^2=10\end{cases}\)

Giải hệ phương trình ta có các nghiệm (4;0) và (-2;2)

Vậy A(0;2);B(4;0);C(-2;-2) là 3 đỉnh của tam giác cần tìm

26 tháng 4 2017


A C B M G

a)Theo bài ra => Tam giác ABC vuông cân ở A

M(1;-1) là trung điểm BC và G\(\left(\dfrac{2}{3};0\right)\) là trọng tâm

=>\(\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AG}\)

Giả sử A có tọa độ (a;b)

=>\(\left\{{}\begin{matrix}1-a=\dfrac{2}{3}\left(\dfrac{2}{3}-a\right)\\-1-b=-\dfrac{2}{3}b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}\\b=-3\end{matrix}\right.\)\(\Rightarrow A\left(\dfrac{5}{3};-3\right)\)

b)Do tam giác ABC vuông cân ở A=>GM vuông góc với BC

Ta có: \(\overrightarrow{GM}=\left(\dfrac{1}{3};-1\right)\)=>VTPT của đường thẳng BC là: \(\overrightarrow{n}=\left(1;-3\right)\) có M(1;-1) thuộc BC

=>phương trình đường thẳng BC:

1(x-1)-3(y+1)=0

hay x-3y-4=0

=> phương trình tham số của BC:\(\left\{{}\begin{matrix}x=3t+4\\y=t\end{matrix}\right.\)

=> tồn tại số thực t để B(3t+4;t) thuộc đường thẳng BC

MB=MA(do tam giác ABC vuông cân ở A,M là trung điểm BC)

=>\(\overrightarrow{MB}^2=\overrightarrow{MA}^2\)

=>(3t+3)2+(t+1)2=\(\left(\dfrac{2}{3}\right)^2+\left(-2\right)^2=\dfrac{40}{9}\)

=> \(t=-\dfrac{1}{3}\)hoặc \(t=-\dfrac{5}{3}\)

TH1: \(t=-\dfrac{1}{3}\)=>B\(\left(3;-\dfrac{1}{3}\right)\) ,do M(1;-1) là trung điểm BC=>C\(\left(-1;-\dfrac{5}{3}\right)\)

TH2:\(t=-\dfrac{5}{3}\)=>B\(\left(-1;-\dfrac{5}{3}\right)\),do M(1;-1) là trung điểm BC=>C\(\left(3;-\dfrac{1}{3}\right)\)

c) Tam giác ABC vuông cân ở A=>M(1;-1) là tâm đường tròn ngoại tiếp và MA là bán kính=>R2=MA2=\(\dfrac{40}{9}\)

Phương trình đường tròn ngoại tiếp tam giác ABC:

(C): \(\left(x-1\right)^2+\left(y+1\right)^2=\dfrac{40}{9}\)

31 tháng 3 2016

A B C M G

Vì M(1;-1) là trung điểm BC và \(G\left(\frac{2}{3};0\right)\) là trọng tâm của tam giác ABC nên \(\overrightarrow{MA}=3\overrightarrow{MG}\) từ đó tìm được A(0;2)

Vì tam giác ABC cân tại A nên \(BC\perp MA\) tức là đường thẳng BC đi qua M(1;-1), nhận \(\overrightarrow{MA}=\left(-1;3\right)\) làm vec tơ pháp tuyến.

Do đó đường thẳng BC có phương trình  \(-1\left(x-1\right)+3\left(y+1\right)=0\)

                                                           hay  \(-x+3y+4=0\)

Do tam giác ABC vuông tại A nên MB=MC=MA=\(\sqrt{10}\)

Suy ra B, C nằm trên đường tròn \(\left(x-1\right)^2+\left(y+1\right)^2=10\)

Từ đó tọa độ B, C là nghiệm của hệ phương trình 

\(\begin{cases}-x+3y+4=0\\\left(x-1\right)^2+\left(y+1\right)^2=10\end{cases}\)

Giải hệ phương trình thu được (x;y) = (4;0) và (x;y) = (-2;2)

Vậy A(0;2), B(4; 0), C(-2;-2)

11 tháng 4 2016

Vì B thuộc đường thẳng (AB) nên \(B\left(a;1-2a\right)\)

Tương tự \(C\left(-2-4b;3b\right)\)

Ta có : \(\overrightarrow{MB}=\left(a-1;4-2a\right);\overrightarrow{MC}=\left(-3-4b;3b+3\right)\)

Ta có \(\left(AB\right)\cap\left(AC\right)=\left\{A\right\}\Rightarrow A\left(2;-3\right)\)

Vì B, M, C thẳng hàng, \(3MB=2MC\) nên ta có : \(3\overrightarrow{MB}=2\overrightarrow{MC}\) hoặc \(3\overrightarrow{MB}=-2\overrightarrow{MC}\)

- Trường hợp 1 : \(3\overrightarrow{MB}=2\overrightarrow{MC}\Rightarrow\begin{cases}3\left(a-1\right)=2\left(-3-4b\right)\\3\left(4-2a\right)=2\left(3b+3\right)\end{cases}\)\(\Rightarrow\begin{cases}a=\frac{11}{5}\\b=\frac{-6}{5}\end{cases}\)

                                                \(\Rightarrow B\left(\frac{11}{5};-\frac{17}{5}\right);C\left(\frac{11}{5};-\frac{18}{5}\right)\Rightarrow G\left(\frac{7}{3};\frac{10}{3}\right)\)

- Trường hợp 2 : \(3\overrightarrow{MB}=-2\overrightarrow{MC}\Rightarrow\begin{cases}3\left(a-1\right)=-2\left(-3-4b\right)\\3\left(4-2a\right)=-2\left(3b+3\right)\end{cases}\)\(\Rightarrow\begin{cases}a=3\\b=0\end{cases}\)

                                                \(\Rightarrow B\left(3;-5\right);C\left(-2;0\right)\Rightarrow G\left(1;\frac{-8}{3}\right)\)

Vậy có 2 điểm \(G\left(1;\frac{-8}{3}\right)\) và \(G\left(\frac{7}{3};\frac{10}{3}\right)\) thỏa mãn đề bài

 

30 tháng 5 2017

Hỏi đáp Toán

30 tháng 5 2017

8 tháng 4 2017

AC đi qua A(1;2) và có VTPT nAC = vec-tơ BH = ( 1;2)
=> AC: 1(x-1) + 2(y-2)=0 <=> x+2y -5=0
BC đi qua B(-3;1) và có VTPT nBC = vec-tơ AH = (-3;1)
=>BC : -3(x+3) + (y-1)=0 <=> -3x + y -10 =0
C là giao điểm của AC và BC nên là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x+2y-5=0\\-3x+y-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{15}{7}\\y=\dfrac{25}{7}\end{matrix}\right.\)
Vậy \(C\left(-\dfrac{15}{7};\dfrac{25}{7}\right)\)

17 tháng 4 2017

Chú ý sử dụng các công thức toán học có sẵn.

7 tháng 4 2016

I C M A D B

Do \(\widehat{AIB}=90^0\Rightarrow\widehat{ACB}=45^0\) hoặc \(\widehat{ACB}=135^0\Rightarrow\widehat{ACD}=45^0\Rightarrow\Delta ACD\) vuông cân tại D nên DA=DC

Hơn nữa IA=IC => \(DI\perp AC\Rightarrow\) đường thẳng AC thỏa mãn điều kiện AC qua điểm M và AC vuông góc ID.

Viết phương trình đường thẳng AC : \(x-2y+9=0\)

Gọi \(A\left(2a-9;a\right)\in AC\). Do \(DA=\sqrt{2}d\left(D,AC\right)=2\sqrt{10}\) nên

\(\sqrt{\left(2a-8\right)^2+\left(a+1\right)^2}=2\sqrt{10}\Leftrightarrow a^2-6a+5=0\)

                                                  \(\Leftrightarrow\begin{cases}a=1\Rightarrow A\left(-7;1\right)\\a=5\Rightarrow A\left(1;5\right)\end{cases}\)

Theo giả thiết đầu bài \(\Rightarrow A\left(1;5\right)\)

Viết phương trình đường thẳng DB : \(x+3y+4=0\). Gọi \(B\left(-3b-4;b\right)\)

Tam giác IAB vuông tại I nên : \(\overrightarrow{IA.}\overrightarrow{IB}=0\Leftrightarrow3\left(-3b-2\right)+4\left(b-1\right)=0\Leftrightarrow b=-2\Rightarrow B\left(2;-2\right)\)

Đáp số \(A\left(1;5\right);B\left(2;-2\right)\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng