K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

Điểm A(x;y) nằm bên trong (kể cả trên cạnh) của 

Có 101 cách chọn x, 11 cách chọn y. Do đó số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là n( Ω ) = 101 x 11

Gọi X là biến cố: “Các điểm A(x;y) thỏa mãn x + y ≤ 90”.

Vậy xác suất cần tính là

24 tháng 8 2016

a) Gọi M' (x₁' ; y₁' ), N' (x₂' ; y₂ ) 

* M' là ảnh của M qua phép F, nên toạ độ M' thoả: 
{x₁' = x₁.cosα – y₁.sinα + a 
{y₁' = x₁.sinα + y₁.cosα + b 

* N' là ảnh của N qua phép F, nên toạ độ N' thoả: 
{x₂' = x₂.cosα – y₂.sinα + a 
{y₂' = x₂.sinα + y₂.cosα + b 

b) * Khoảng cách d giữa M và N là: 
d = MN = √ [(x₂ - x₁)² + (y₂ - y₁)²] 

* Khoảng cách d' giữa M' và N' là: 
d' = M'N' = √ [(x₂' - x₁' )² + (y₂' - y₁' )²] 

= √ {[x₂.cosα – y₂.sinα + a - (x₁.cosα – y₁.sinα + a)]² + [x₂.sinα + y₂.cosα + b - (x₁.sinα + y₁.cosα + b)]²} 

= √ {[cosα(x₂ - x₁) - sinα(y₂ - y₁)]² + [sinα(x₂ - x₁) + cosα(y₂ - y₁)]²} 

= √ [(x₂ - x₁)².(cos²α + sin²α) + (y₂ - y₁)².(cos²α + sin²α)] 

= √ [(x₂ - x₁)² + (y₂ - y₁)²] 

c) Phép F là phép dời hình vì: MN = M'N' = √ [(x₂ - x₁)² + (y₂ - y₁)²] 

d) Khi α = 0 ⇒ cosα = 1, sinα = 0 

Suy ra: 
{x' = x + a 
{y' = y + b 
Đây là biểu thức toạ độ của phép tịnh tiến. Vậy F là phép tịnh tiến

6 tháng 8 2020

2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)

ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0

\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1

vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)

\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1

\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0

vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)