Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn có tâm \(I\left(-3;1\right)\) bán kính \(R=\sqrt{5}\); \(\overrightarrow{AI}=\left(1;-1\right)\)
Theo tính chất của đường tròn, do A là trung điểm MN
\(\Rightarrow IA\perp MN\Rightarrow IA\perp d\) \(\Rightarrow\) đường thẳng d nhận \(\overrightarrow{AI}\) là một vtpt
Phương trình d là:
\(1\left(x+4\right)-1\left(y-2\right)=0\Leftrightarrow x-y+6=0\)
Đường tròn (C) có tâm \(I\left(1;2\right)\) và có bán kính \(R=2\)
(C) là đường tròn tâm \(I\left(2;-3\right)\) bán kính \(R=5\)
\(\overrightarrow{DI}=\left(1;-4\right)\Rightarrow ID=\sqrt{17}< R\Rightarrow\) D là 1 điểm thuộc miền trong đường tròn
Gọi H là hình chiếu vuông góc của I lên \(\Delta\Rightarrow\) H là trung điểm AB
Theo định lý Pitago: \(AH^2=IA^2-IH^2=R^2-IH^2\Leftrightarrow\dfrac{1}{4}AB^2=25-IH^2\)
\(\Rightarrow AB\) đạt min khi và chỉ khi IH đạt max
Mặt khác trong tam giác vuông IDH, theo định lý đường xiên-đường vuông góc ta luôn có:
\(IH\le ID\Rightarrow IH_{max}=ID\) khi H trùng D \(\Leftrightarrow\Delta\perp ID\)
\(\Rightarrow\) đường thẳng \(\Delta\) nhận (1;-4) là 1 vtpt
Phương trình \(\Delta\):
\(1\left(x-1\right)-4\left(y-1\right)=0\Leftrightarrow x-4y+3=0\)
\(\Rightarrow\left\{{}\begin{matrix}b=-4\\c=3\end{matrix}\right.\)
\(\left(C\right):x^2+y^2+4x-6y-12=0\)
\(\Leftrightarrow\left(C\right):\left(x+2\right)^2+\left(y-3\right)^2=25\)
\(\Rightarrow I=\left(-2;3\right)\) là tâm đường tròn, bán kính \(R=5\)
Kẻ IH vuông góc với AB.
\(\Rightarrow IH=\sqrt{R^2-AH^2}=\sqrt{5^2-\dfrac{1}{4}.50}=\dfrac{5\sqrt{2}}{2}\)
Đường thẳng AB có dạng: \(ax+by-2a=0\left(a^2+b^2\ne0\right)\)
Ta có: \(d\left(I;AB\right)=\dfrac{\left|-2a+3b-2a\right|}{\sqrt{a^2+b^2}}=\dfrac{5\sqrt{2}}{2}\)
\(\Leftrightarrow7a^2-48ab-7b^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=7b\\b=-7a\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}AB:7x+y-14=0\\AB:x-7y-2=0\end{matrix}\right.\)
Đường tròn tâm \(I\left(2;3\right)\) bán kính \(R=2\sqrt{2}\)
\(\overrightarrow{IA}=\left(1;-1\right)\Rightarrow AI=\sqrt{2}< R\Rightarrow\) A nằm phía trong đường tròn
Gọi H là trung điểm MN \(\Rightarrow IH\perp MN\)
\(MN=2MH=2\sqrt{R^2-IH^2}=2\sqrt{8-IH^2}\)
\(\Rightarrow MN_{min}\) khi \(IH_{max}\)
Trong tam giác vuông IAH vuông tại H, ta luôn có \(IH\le IA\)
\(\Rightarrow IH_{max}=IA\) khi H trùng A hay đường thẳng d vuông góc AI
\(\Rightarrow\) d qua A và nhận \(\overrightarrow{IA}=\left(1;-1\right)\) là 1 vtpt
Phương trình d: \(1\left(x-3\right)-1\left(y-2\right)=0\Leftrightarrow x-y-1=0\)