Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 5 ấy chắc thầy tui buồn ngủ nên quánh lộn chữ sai thành đúng r
12.
\(R=d\left(I;Oxz\right)=\left|y_I\right|=3\)
Phương trình:
\(x^2+\left(y+3\right)^2+z^2=9\)
\(\Leftrightarrow x^2+y^2+z^2+6y=0\)
13.
\(R=d\left(M;\alpha\right)=\frac{\left|1-1+2.2-3\right|}{\sqrt{1^2+1^2+2^2}}=\frac{1}{\sqrt{6}}\)
Pt mặt cầu:
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=\frac{1}{6}\)
14.
\(R=d\left(I;\left(P\right)\right)=\frac{\left|-1-4-2-2\right|}{\sqrt{1^2+2^2+2^2}}=3\)
Phương trình:
\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2=9\)
\(\Leftrightarrow x^2+y^2+z^2+2x-4y-2z-3=0\)
a. Từ giả thiết ta có \(\overrightarrow{AB}=\left(1;-6;-5\right)\) và \(\overrightarrow{CA}=\left(1;2;1\right)\)
Suy ra :
\(\left|\overrightarrow{AB;}\overrightarrow{CA}\right|=\left(\left|\begin{matrix}-6&-5\\2&1\end{matrix}\right|;\left|\begin{matrix}-5&1\\1&1\end{matrix}\right|;\left|\begin{matrix}1&-6\\1&2\end{matrix}\right|\right)\)
Từ đó do \(\left[\overrightarrow{AB;}\overrightarrow{CA}\right]\ne\overrightarrow{0}\) nên A, B, C không thẳng hàng và mặt phẳng (P) đi qua A,B,C có vecto pháp tuyến \(\overrightarrow{n}=\frac{1}{2}\left[\overrightarrow{AB;}\overrightarrow{CA}\right]=\left(2;-3;4\right)\)
Suy ra (P) có phương trình:
\(2\left(x-3\right)-3\left(y-3\right)+4\left(z-2\right)=0\)
hay :
\(2x-3y+4z-5=0\)
b. Do \(OD=\sqrt{1^2+2^2+1^2}=\sqrt{6}\) nên \(S_{\Delta ODE}\) bé nhất khi và chỉ khi \(d\left(E;OD\right)\) bé nhất.
(P) F E O X D
\(\overrightarrow{OD}.\overrightarrow{n}=1.2.\left(-3\right)+1.4\) và\(1.2+2\left(-3+1.4-5\ne0\right)\) nên \(OD\backslash\backslash\left(P\right)\). Bởi vậy tập hợp tất cả những điểm \(E\in\left(P\right)\) sao cho \(d\left(E;OD\right)\) bé nhất là OD trên mặt phẳng (P)
Gọi d là đường thẳng đi qua O và vuông góc với (P). Khi đó d có phương trình :
\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{4}\)
Gọi M là hình chiếu của O(0;0;0) trên (P). Khi đó tọa độ của M thỏa mãn hệ phương trình :
\(\begin{cases}\frac{x}{2}=\frac{y}{-3}=\frac{z}{4}\\2x-3y+4z-5=0\end{cases}\)
Giải hệ ta được : \(M\left(\frac{10}{29};\frac{-15}{29};\frac{20}{29}\right)\)
Vậy tập hợp tất cả các điểm E cần tìm là đường thẳng đi qua M, song song với OD, do đó có phương trình dạng tham số :
\(\begin{cases}x=\frac{10}{29}+t\\y=-\frac{15}{29}+2t\\z=\frac{20}{29}+t\end{cases}\) \(\left(t\in R\right)\)
Giải:
a) Mặt phẳng (ACD) đi qua A(5 ; 1 ; 3) và chứa giá của các vectơ (0 ; -1 ; 1)
và (-1 ; -1 ; 3).
Vectơ = (-2 ; -1 ; -1) vuông góc với mặt phẳng (ACD).
Phương trình (ACD) có dạng:
2(x - 5) + (y - 1) + (z - 3) = 0.
hay 2x + y + z - 14 = 0.
Tương tự: Mặt phẳng (BCD) qua điểm B(1 ; 6 ; 2) và nhận vectơ làm vectơ pháp tuyến.
Ta có :(4 ; -6 ; 2), (3 ; -6 ; 4) và
= (-12 ; -10 ; -6)
Xét (6 ; 5 ; 3) thì nên cũng là vectơ pháp tuyến của mặt phẳng (BCD). Phương trình mặt phẳng (BCD) có dạng:
6(x - 1) + 5(y - 6) +3(z - 2) = 0
hay 6x + 5y + 3z - 42 = 0.
b) Mặt phẳng ( α ) qua cạnh AB và song song với CD thì ( α ) qua A và nhận
(-4 ; 5 ; 1) , (-1 ; 0 ; 2) làm vectơ chỉ phương.
Vectơ = (10 ; 9 ; 5) là vectơ pháp tuyến của ( α ).
Phương trình mặt phẳng ( α ) có dạng : 10x + 9y + 5z - 74 = 0.
C K O E H F B A D
Trên \(\Delta\) lấy điểm D sao cho à D, A nằm khác phía nhau so với B. Gọi E là giao điểm của các đường thẳng KA và OC; Gọi F là giao điểm của các đường thẳng KB và OD
Vì K là tâm đường tròn bàng tiếp góc O của tam giác OAB nên KE là phân giác của góc OAC. Mà OAC là tam giác cân tại A ( do OA = AC, theo gt) nên suy ra KE cũng là đường trung trục của OC. Do đó, E là trung điểm của OC và KC=KO
Xét tương tự đối với KF, ta cũng có F là trung điểm của OD và KD=KO
Suy ra tam giác CKD cân tại K. Do đó, hạ KH vuông góc với \(\Delta\) , ta có H là trung điểm của CD. Như vậy :
+ A là giao của \(\Delta\) và đường trung trực \(d_1\) của đoạn OC (1)
+ B là giao của \(\Delta\) và đường trung trực \(d_2\) của đoạn OD, với D là điểm đối xứng của C qua H là hình chiếu vuông góc của K trên \(\Delta\) (2)
Vì \(C\in\Delta\) và có hoành độ \(x_0=\frac{24}{5}\) nên gọi \(y_0\) là tung độ của C, ta có :
\(2.\frac{24}{5}+3y_0-12=0\) suy ra \(y_0=-\frac{12}{5}\)
Từ đó, trung điểm E của OC có tọa độ là \(\left(\frac{12}{5};-\frac{6}{5}\right)\) và đường thẳng OC có phương trình \(x+2y=0\)
Suy ra phương trình của \(d_1\) là \(2x-y-6=0\)
Do đó, theo (1), tọa độ của A là nghiệm của hệ phương trình :
\(\begin{cases}4x+3y-12=0\\2x-y-6=0\end{cases}\)
Giải hệ ta có \(A=\left(3;0\right)\)
Để tìm tọa độ đỉnh B ta làm như sau :
Gọi d là đường thẳng đi qua K(6;6) và vuông góc với \(\Delta\).
Ta có phương trình của d là : \(3x-4y+6=0\). Từ đây, do H là giao điểm của \(\Delta\). và d nên tọa độ của H là nghiệm của hệ phương trình :
\(\begin{cases}4x+3y-12=0\\3x-4y+6=0\end{cases}\)
Giải hệ trên, ta được \(H=\left(\frac{6}{5};\frac{12}{5}\right)\) suy ta \(D=\left(-\frac{12}{5};\frac{26}{5}\right)\)
Do đó, trung điểm F của OD có tọa độ là \(\left(-\frac{6}{5};\frac{18}{5}\right)\) và đường thẳng OD có phương trình \(3x+y=0\)
Suy ra phương trình của \(d_2\) là \(x-3y+12=0\)
Do đó, theo (2), tọa độ B là nghiệm của hệ phương trình :
\(\begin{cases}4x+3y-12=0\\x-3y+12=0\end{cases}\)
Giải hệ trên ta được B=(0;4)
A C D B (P) (Q)
Do \(\left(P\right)\perp\left(Q\right)\) và \(\left(P\right)\cap\left(Q\right)=\Delta\)
và \(DB\perp\left(\Delta\right)\left(DB\in\left(Q\right)\right)\)
Nên \(DB\perp\left(P\right)\Rightarrow DB\perp BC\)
Tương tự ta có :
\(CA\perp AD\)
Vì \(\widehat{CAD}=\widehat{DBC}=90^0\) nên CD chính là đường kính hình cầu ngoại tiếp tứ diện ABCD.
Gọi R là bán kính của hinh cầu này thì :
\(R=\frac{1}{2}CD\) (1)
Theo định lý Pitagoc trong 2 tam giác vuông CAD, ABD ta có :
\(CD^2=CA^2+AD^2=CA^2+BA^2+BD^2=3a^2\)
\(\Rightarrow CD=a\sqrt{3}\) (2)
Từ (1) và (2) suy ra \(R=\frac{a\sqrt{3}}{2}\)
Chọn D
Trên cạnh AB, AC , AD của tứ diện ABCD lần lượt có các điểm B', C', D'. Áp dụng công thức tỷ số thể tích ta có
Từ giả thiết
áp dụng bất đẳng thức AM- GM ta có
Do thể tích ABCD cố định nên thể tích AB'C'D' nhỏ nhất
=> (B'C'D') song song với (BCD) và đi qua điểm B'
suy ra vectơ pháp tuyến của mặt phẳng (B'C'D') là:
Vậy phương trình (B'C'D') là: