Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(y=\frac{3\left(x+1\right)}{x-2}=3+\frac{9}{x-2}\) để các điểm trên C có tọa độ nguyên thì (x,y) nguyên
suy ra (x-2) là ước của 9
mà \(Ư\left\{9\right\}=\left\{\pm9;\pm3;\pm1\right\}\)
TH1: x-2=-9 suy ra x=-7 suy ra y=3-1=2
th2: x-2=9 suy ra x=11 suy ra y=3+1=4
th3:x-2=-3 suy ra x=-2 suy ra y=3-3=0
th4: x-2=3 suy ra x=5 suy ra y=3+3=6
th5:x-2=1 suy ra x=3 suy ra y=3+9=12
th6: x-2=-1 suy ra x=1 suy ra y=3-9=-6
kết luận....
Đáp án A.
Mặt cầu (S) có tâm O ( 0 ; 4 ; 0 ) và bán kính R = 5 .Điểm A ∈ O y → A ( 0 ; b ; 0 ) . Khi đó ba mặt phẳng theo giả thiết đi qua A và có phương trình tổng quát lần lượt là α 1 : x = 0 , α 2 : y - b = 0 và α 3 : z = 0 .
Nhận thấy d I ; α 1 = d I ; α 2 = d I ; α 3 = 0 nên mặt cầu (S) cắt các mặt phẳng α 1 , α 3 theo giao tuyến là đường tròn lớn có tâm I, bán kính R = 5 . Tổng diện tích của hai hình tròn đó là S 1 + S 3 = 2 πR 2 = 10 π .
Suy ra mặt cầu (S) cắt α 2 theo giao tuyến là một đường tròn có diện tích là S 3 = 11 π - S 1 + S 2 = 11 π - 10 π = π . Bán kính đường tròn này là r = S 3 π = 1 .
→ d I , α 3 = R 2 - r 2 = 2 = 4 - b ⇔ b = 2 b = 6 . Vậy A 0 ; 2 ; 0 A ( 0 ; 6 ; 0 ) .
Đáp án A
Ta có: a → ; b → = m - 4 ; 2 m + 1 ; 2 - m 2 - m Để a → , b → , c → đông phẳng thì a → ; b → c → = 0 ⇔ 2 m + 1 m - 2 + 2 2 - m 2 - m = 0 ⇔ - 3 m - 2 + 4 - 2 m = 0 ⇔ m = 2 5 .
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
a) vẽ dễ lắm ; tự vẽ nha
b) xét phương trình hoành độ của 2 đồ thị đó
ta có : \(x^2=-2x+3\Leftrightarrow x^2+2x-3=0\)
ta có : \(a+b+c=1+2-3=0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x_1=1\) \(\Rightarrow y=x^2=1^2=1\) vậy \(A\left(1;1\right)\)
\(x_2=\dfrac{c}{a}=-3\) \(\Rightarrow y=x^2=\left(-3\right)^2=9\) vậy \(B\left(-3;9\right)\)
vậy 2 đồ thị cắt nhau tại 2 điểm phân biệt là \(A\left(1;1\right)\) và \(B\left(-3;9\right)\)
Chọn đáp án D