K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2018

20 tháng 4 2018

Đáp án A

26 tháng 2 2019

Đáp án D

Phương pháp:

+ Tìm tâm và bán kính của mặt cầu

+ Xác định vị trí tương đối của mặt phẳng và mặt cầu để suy ra vị trí của điểm M

+ Tìm tọa độ của đường thẳng và mặt cầu thì ta giải hệ phương trình gồm phương trình đường thẳng và phương trình mặt cầu

Cách giải:

Mặt cầu (S) có tâm 

nên mặt phẳng (P) không cắt mặt cầu (S).Khi đó điểm  M  thuộc mặt cầu (S) sao cho khoảng cách từ M  đến mặt phẳng (P) là nhỏ nhất thì M  là giao điểm của đường thẳng d  đi qua I , nhận  n P → = 2 ; - 1 ; 2  làm VTCP với mặt cầu.

Phương trình đường thẳng 

Tọa độ giao điểm của đường thẳng d  và mặt cầu (S) thỏa mãn hệ phương trình

8 tháng 1 2017

2 tháng 7 2019

Chọn A .

Phương pháp: S.

29 tháng 3 2018

Kiểm tra thấy AB nằm khác phía so với mặt phẳng (P)

Ta tìm được điểm đối xứng với B qua (P) là B ' ( -1;-3;4 ) 

Lại có  M A - M B = M A - M B ' ≤ A B ' = c o n s t .

Vậy  M A - M B  đạt giá trị lớn nhất khi M, A, B’ thẳng hàng hay M là giao điểm của đường thẳng AB’ với mặt phẳng (P).

Đường thẳng AB’ có phương trình tham số là x = 1 + t y = - 3 z = - 2 y .

Tọa độ điểm M ứng với tham số t là nghiệm của phương trình

1 + t + - 3 + - 2 t - 1 = 0 ⇔ t = - 3 ⇒ M - 2 ; - 3 ; 6

Suy ra a = -2; b = -3; c = 6 

Vậy a + b + c = 1

Đáp án A

20 tháng 11 2017

Đáp án C

 

 

12 tháng 10 2018

Gọi I(x;y;z) là điểm thỏa mãn 3 I A ⇀ - 2 I B ⇀ = 0 → ⇔ 3 I A ⇀ = 2 I B ⇀

Ta có 

Khi đó  3 I A ⇀ = 2 I B ⇀

Ta có:

 (vì 3 I A ⇀ - 2 I B ⇀ = 0 ⇀ )

Khi đó | 3 M A ⇀ - 2 M B ⇀ | = | M I ⇀ | = M I  nhỏ nhất khi M là hình chiếu của I trên mặt phẳng (P)

Phương trình đường thẳng d qua I(-3;-2;8) và vuông góc với (P) 

Suy ra M = d ∩ ( P )  nên tọa độ điểm M là nghiệm của hệ

Từ đó 

⇒ S = 9 a + 3 b + 6 c = - 33 - 8 + 44 = 3

Chọn đáp án B.

6 tháng 11 2018

Đáp án A

P = M I 2 +2 M I → . I A → +IA 2 + M I 2 +2 M I → . I B → +IB 2 +3MI 2 + 6 M I → . I C → + 3 I C 2

P = 5 M I 2 + IA 2 +IB 2 + 3 I C 2 ⏟ c o n s t + 2 M I → . I A → + I B → + 3 I C → ⏟ 0 →

⇒ P min ⇔ M I min