Trong không gian với hệ tọa độ Oxyz, cho điểm H 1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

Đáp án C.

 Đặt  A = a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c a b c ≠ 0

Ta có  H A → = a − 1 ; − 2 ; − 3 , H B → = − 1 ; b − 2 ; − 3 , B C → = 0 ; − b ; c , A C → = − a ; 0 ; c

H là trực tâm  Δ A B C ⇒ H A → . B C → = 0 H B → . A C → = 0 ⇔ 2 b − 3 c = 0 a − 3 c = 0   .

Phương trình mặt phẳng  có dạng  x a + y b + z c = 1  

⇔ x a + y a 2 + z a 3 = 1 ⇔ x + 2 y + 3 z − a = 0

Vì   A B C đi qua H  ⇒ 1 + 2.2 + 3.3 = a ⇔ a = 14

Vậy phương trình (P) là x + 2 y + 3 z − 14 = 0 .

4 tháng 2 2016

Hỏi đáp Toán

https://i.imgur.com/3Wy6g2D.jpg
7 tháng 2 2018

17 tháng 2 2017

Đáp án B

Vì OA, OB, OC đôi một vuông góc và M là trực tâm Δ A B C ⇒ O M ⊥ A B C  

Suy ra mp A B C  nhận O M →  làm véc tơ pháp tuyến và đi qua điểm M(1;2;3)

Vậy phương trình m p P : 1. x − 1 + 2. y − 2 + 3. z − 3 = 0 ⇔ x + 2 y + 3 z − 14 = 0  

13 tháng 1 2018

Đáp án C

Vì OA, OB, OC đôi một vuông góc và H là trực tâm Δ A B C ⇒ O H ⊥ m p A B C  

Khi đó d O ; A B C = O H = 3 ⇒  Phương trình mặt cầu là x 2 + y 2 + z 2 = 9

1 tháng 2 2016

Áp dụng BĐT tam giác ta có:

a+b>c =>c-a<b =>c2-2ac+a2<b2

a+c>b =>b-c <a =>b2-2bc+c2<a2

b+c>a =>a-b<c =>a2-2ab+b2<c2

Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2

<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2

<=>-2(ab+bc+ca)<-(a2+b2+c2)

<=>2.(ab+bc+ca)<a2+b2+c2

 

23 tháng 2 2016

\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

Mà \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ; \(m\in N\)*

Do đó \(M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)

Vậy 1 < M < 2 nên M không phải là số tự nhiên/

25 tháng 2 2019

27 tháng 12 2017