Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Đặt A = a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c a b c ≠ 0
Ta có H A → = a − 1 ; − 2 ; − 3 , H B → = − 1 ; b − 2 ; − 3 , B C → = 0 ; − b ; c , A C → = − a ; 0 ; c
H là trực tâm Δ A B C ⇒ H A → . B C → = 0 H B → . A C → = 0 ⇔ 2 b − 3 c = 0 a − 3 c = 0 .
Phương trình mặt phẳng có dạng x a + y b + z c = 1
⇔ x a + y a 2 + z a 3 = 1 ⇔ x + 2 y + 3 z − a = 0
Vì A B C đi qua H ⇒ 1 + 2.2 + 3.3 = a ⇔ a = 14
Vậy phương trình (P) là x + 2 y + 3 z − 14 = 0 .
Đáp án B
Vì OA, OB, OC đôi một vuông góc và M là trực tâm Δ A B C ⇒ O M ⊥ A B C
Suy ra mp A B C nhận O M → làm véc tơ pháp tuyến và đi qua điểm M(1;2;3)
Vậy phương trình m p P : 1. x − 1 + 2. y − 2 + 3. z − 3 = 0 ⇔ x + 2 y + 3 z − 14 = 0
Đáp án C
Vì OA, OB, OC đôi một vuông góc và H là trực tâm Δ A B C ⇒ O H ⊥ m p A B C
Khi đó d O ; A B C = O H = 3 ⇒ Phương trình mặt cầu là x 2 + y 2 + z 2 = 9
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)
Mà \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ; \(m\in N\)*
Do đó \(M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)
Vậy 1 < M < 2 nên M không phải là số tự nhiên/
Đáp án C