Oxyz, cho ba điểm A(2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2020

\(\left\{{}\begin{matrix}\overrightarrow{MA}=\left(a-2;3;b-1\right)\\\overrightarrow{MB}=\left(a-1;-2;b\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{MA}-2\overrightarrow{MB}=\left(-a;7;-b-1\right)\)

\(\Rightarrow\left|\overrightarrow{MA}-2\overrightarrow{MB}\right|=\sqrt{a^2+\left(b+1\right)^2+7^2}\ge7\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=0\\b=-1\end{matrix}\right.\) \(\Rightarrow a+2b=-2\)

NV
22 tháng 4 2020

\(\overrightarrow{AB}=\left(2;2;1\right)\Rightarrow\) pt tham số của CD có dạng: \(\left\{{}\begin{matrix}x=-1+2t\\y=3+2t\\z=2+t\end{matrix}\right.\)

\(\Rightarrow C\left(-1+2t;3+2t;2+t\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{CB}=\left(4-2t;1-2t;-1-t\right)\\\overrightarrow{CD}=t\left(-2;-2;-1\right)\end{matrix}\right.\)

\(cos45^0=\frac{\sqrt{2}}{2}=\frac{-2\left(4-2t\right)-2\left(1-2t\right)+1\left(1+t\right)}{\sqrt{4+4+1}.\sqrt{\left(4-2t\right)^2+\left(1-2t\right)^2+\left(1+t\right)^2}}\)

\(\Leftrightarrow\frac{t-1}{\sqrt{t^2-2t+2}}=\frac{\sqrt{2}}{2}\) (\(t>1\))

\(\Leftrightarrow2\left(t-1\right)^2=t^2-2t+2\)

\(\Leftrightarrow t^2-2t=0\Rightarrow\left[{}\begin{matrix}t=0\left(l\right)\\t=2\end{matrix}\right.\) \(\Rightarrow C\left(3;7;4\right)\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2017

Bài 1)

Gọi số phức $z$ có dạng \(z=a+bi(a,b\in\mathbb{R})\).

Ta có \(|z|+z=3+4i\Leftrightarrow \sqrt{a^2+b^2}+a+bi=3+4i\)

\(\Rightarrow\left\{\begin{matrix}\sqrt{a^2+b^2}+a=3\\b=4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=\frac{5}{6}\\b=4\end{matrix}\right.\)

Vậy số phức cần tìm là \(\frac{5}{6}+4i\)

b)

\(\left\{\begin{matrix} z_1+3z_1z_2=(-1+i)z_2\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{z_1}{z_2}+3z_1=-1+i\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \frac{z_1}{z_2}+z_1+z_2=(-1+i)-(3+2i)=-4-i\)

\(\Leftrightarrow w=-4-i\Rightarrow |w|=\sqrt{17}\)

NV
15 tháng 4 2020

\(\overrightarrow{AB}=\left(6;4;-6\right)=2\left(3;2;-3\right)\)

\(\Rightarrow\) Mặt phẳng (P) vuông góc AB nhận \(\left(3;2;-3\right)\) là 1 vtpt

Phương trình (P):

\(3\left(x+1\right)+2\left(y-3\right)-3\left(z-4\right)=0\)

\(\Leftrightarrow3x+2y-3z+9=0\)

21 tháng 8 2017

tìm 2 điểm A và B . tam giác vuông tại 0 => vecto OA*OB= 0 với O là gốc

21 tháng 8 2017

a đù xem lần đầu sao k có pt h lại có . bài này mk tìm dc denta'=1=> nghiệm x1=m+1:x2=m-1( theo công thức nghiệm)=>A(m+1:0),B(m-1;0) => vì tam giác OAB vuông mà O là gốc nên => tích OA.OB=0 <=>(m+1)*(m-1)+0*0=0 => m^2-1=0 => m=+-1

NV
15 tháng 4 2020

\(\overrightarrow{AB}=\left(-6;2;2\right)=-2\left(3;-1;-1\right)\)

Gọi M là trung điểm AB \(\Rightarrow M\left(1;1;2\right)\)

Phương trình trung trực AB:

\(3\left(x-1\right)-1\left(y-1\right)-1\left(z-2\right)=0\)

\(\Leftrightarrow3x-y-z=0\)

23 tháng 5 2016
a) Gọi H là trung điểm của  BC thì H là hình chiếu vuông góc của  B trên mp(P)
mp(P)  có vecto pháp tuyến  \(\overrightarrow{n}\)=(1;1;1). Nếu gọi  Δ là đường thẳng  qua B và vuông góc với (P) thì Δ có phương  trình tham số  là: \(\begin{cases}x=5+t\\y=-1+t\\z=-2+t\end{cases}\) (t\(\in R\) )
Tọa độ H ứng với t là nghiệm đúng của phương trình : \(\left(5+t\right)+\left(-1+t\right)+\left(-2+t\right)+1=0\Leftrightarrow t=-1\)
Suy ra \(H\left(4;-2;-3\right)\) và \(\begin{cases}x_C=4.2-5=3\\y_c=-2.2+1=-3\\z_C=-3.2+2=-4\end{cases}\) Vậy \(C\left(3;-3;-4\right)\)
 
Gọi \(f\left(M\right)=x+y+z-1\) Với \(M\left(x;y;z\right);A\left(1;-3;0\right);B\left(5;-1;-2\right)\)
Ta có : \(f\left(A\right)=-3< 0;f\left(B\right)=1>0\) \(\Rightarrow\) A;B nằm khác phía đối với mp(P)
Do đó 2 điểm B,C đối xứng nhau qua mp(P) nên M là 1 điểm bất kì trên mp(P) ta luôn có \(MB=MC\)
Ta có: \(\left|MA-MB\right|=\left|MA-MC\right|\le AC\) 
Đẳng thức xảy ra khi 3 điểm A,C,M thẳng hàng và điểm M nằm ngoài AC. Khi đó M trùng với Mo là giao điểm của đường thẳng AC với mp(P). đường thẳng AC có VTCP \(\overrightarrow{u}=\left(2;0;-4\right)\) PTTS AC : \(\begin{cases}x=1+2t\\y=-1\\z=-4t\end{cases}\)
Tọa độ Mo ứng với t là nghiệm đúng của pt: \(\left(1+2t\right)-1-4t-1=0\Leftrightarrow t=\frac{-1}{2}\) 
Suy ra \(M_o\left(0;-1;2\right)\)
Vậy max \(\left|MA-MB\right|=AC=2\sqrt{5}\) khi M ở vị trí M(0;-1;2)
NV
15 tháng 4 2020

\(\overrightarrow{AB}=\left(-3;3;-1\right)\)

Phương trình tham số AB: \(\left\{{}\begin{matrix}x=2-3t\\y=-2+3t\\z=1-t\end{matrix}\right.\)

Mặt phẳng (Oxz) có pt \(y=0\)

\(\Rightarrow\) Tọa độ M thỏa mãn: \(-2+3t=0\Leftrightarrow t=\frac{2}{3}\)

\(\Rightarrow M\left(0;0;\frac{1}{3}\right)\)

NV
15 tháng 4 2020

\(\overrightarrow{AB}=\left(2;-2;2\right)=2\left(1;-1;1\right)\)

Gọi I là trung điểm AB \(\Rightarrow I\left(1;0;2\right)\)

Phương trình (P):

\(1\left(x-1\right)-1\left(y-0\right)+1\left(z-2\right)=0\)

\(\Leftrightarrow x-y+z-3=0\)