Trong không gian với hệ toạ độ Oxyz, cho ba điểm  A(2;-1;1), B(1;0;4) và C...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 biết \(\int_3^7\) f(x)dx=4 . Tính E=\(\int_3^7\) [f(x)+1] 2 tính diện tích S của hình phẳng giới hạn bởi các đường y =\(\frac{2x-1}{-x+1}\) và hai trục tọa độ 3 phuog trình \(z^2+az+b=0,\left(a,b\in R\right)\) có một nghiệm là z=-2+i.Gía trị a - b bằng 4 trong không gian hệ tọa độ oxyz, phương trình mặt phẳng qua M (1;1;1) song song (oxy) là 5 trong không gian oxyz, cho mp (P) 2x+y-z-1=0 và (Q) x-2y+z-5=0 . Khi đó, giao...
Đọc tiếp

1 biết \(\int_3^7\) f(x)dx=4 . Tính E=\(\int_3^7\) [f(x)+1]

2 tính diện tích S của hình phẳng giới hạn bởi các đường y =\(\frac{2x-1}{-x+1}\) và hai trục tọa độ

3 phuog trình \(z^2+az+b=0,\left(a,b\in R\right)\) có một nghiệm là z=-2+i.Gía trị a - b bằng

4 trong không gian hệ tọa độ oxyz, phương trình mặt phẳng qua M (1;1;1) song song (oxy) là

5 trong không gian oxyz, cho mp (P) 2x+y-z-1=0 và (Q) x-2y+z-5=0 . Khi đó, giao tuyến của (P) và (Q) có một vecto chỉ phương là

A \(\overline{u}\) (1;-2;1) B \(\overline{u}\) (1;3;5) C \(\overline{u}\) (2;1-1) D \(\overline{u}\) (-1;3;-5)

6 trong ko gian oxyz cho điểm A(0;1;-2) .Tọa độ điểm H là hình chiếu vuông góc của điểm A trên mặt phẳng (P) :-x-2y+2z-3=0 là

7 trong ko gain oxyz cho điểm A(1;0;2).Tọa độ điểm H là hình chiều vuông góc của điểm A trên đường thẳng d :\(\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z+3}{3}\)

8 trong ko gian oxyz , mặt phẳng nào sau đây nhận vecto \(\overline{n}\) =(1;2;3) làm vecto pháp tuyến

A 2z-4z+6=0 B x+2y-3z-1=0 C x-2y+3z+1=0 D 2x+4y+6z+1=0

9 Trong ko gian oxyz , cho ba điểm A(2;1;-1),B(-1;0;4),C(0;-2;-1) .Phương trình nào sau đây là phương trình của mặt phẳng A và vuông góc BC

A :x-2y-5z+5=0 B x-2y-5z-5=0 C x-2y-5z=0 D 2x-y+5z-5=0

10 trong không gian oxyz , cho hai điểm A(4;1;0) ,B(2;-1;2).Trong các vecto sau , một vecto chỉ phương của đường thẳng AB là

A \(\overline{U}\) (3;0;-1) B \(\overline{u}\) (1;1;-1) C \(\overline{u}\) (2;2;0) D \(\overline{u}\) (6;0;2)

11 Trong ko gian oxyz, viết pt tham số của đường thẳng đi qua hai điểm A(1;2;-3) ,B(2;-3;1)

12 Trong ko gian oxyz, cho điểm A(-2;0;3) và mp (p) -2X+Y-Z+11=0.Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên mp (P)

13 trong ko gian vói hệ tọa độ oxyz, cho điểm A(1;0;2).TỌA độ điểm \(A^'\) (A phẩy) là điểm đối xúng của điểm A qua đường thẳng d :\(\frac{x-1}{2}=\frac{y+1}{-1}\frac{z+3}{3}\)

0
Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q)...
Đọc tiếp

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).

(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q) là:

\(a)\left(x+3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(b)\left(x+3\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=\frac{4}{9}\)

\(c)\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(d)\left(x-3\right)^2+\left(y-1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

Câu 2: Cho mặt cầu (S): \(x^2+y^2+z^2-2x+2y+1=0\)và điểm \(M\left(0;-1;0\right).\)

Phương trình mặt phẳng (P) tiếp xúc với (S) tại M là:

\(a)2x+y-z+1=0.\)                     \(b)x=0.\)            

\(c)-x+y+2z+1=0.\)              \(d)x+y+1=0\)

Câu 3: Trong khai triển \(f\left(x\right)=\frac{1}{256}\left(2x+3\right)^{10}\)thành đa thức, hệ số của x8 là:

\(a)103680.\)            \(b)405.\)             \(c)106380.\)            \(d)504.\)

Câu 4: Tổng các nghiệm của phương trình \(2^{x^2-3}.5^{x^2-3}=0,01.\left(10^{x-1}\right)^3\)là:

\(a)3.\)            \(b)5.\)            \(c)0.\)            \(d)2\sqrt{2}.\)

 

1
21 tháng 6 2019

Lần sau em đăng bài ở học 24 để mọi người giúp đỡ em nhé!

Link đây: Cộng đồng học tập online | Học trực tuyến

1. Gọi I là tâm của mặt cầu cần tìm

Vì I thuộc d

=> I( a; -1; -a)

Mặt cầu tiếp xúc với hai mặt phẳng (p), (Q). nên ta co:

d(I; (P))=d(I;(Q))

<=> \(\frac{\left|a+2\left(-1\right)+2\left(-a\right)+3\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|a+2\left(-1\right)+2\left(-a\right)+7\right|}{\sqrt{1^2+2^2+2^2}}\)

\(\Leftrightarrow\frac{\left|-a+1\right|}{3}=\frac{\left|-a+5\right|}{3}\Leftrightarrow a=3\)

=> I(3; -1; -3) ; bán kinh : R=d(I; P)=2/3

=> Phương trình mặt cầu:

\(\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

đáp án C.

2. Gọi I là tâm mặt cầu: I(1; -1; 0)

Ta có: Phương trình mặt phẳng (P) tiếp xúc vs mặt Cầu S tại M

=> IM vuông góc vs mặt phẳng (P)

=> \(\overrightarrow{n_p}=\overrightarrow{MI}=\left(1;0;0\right)\)

=> Phương trình mặt phẳng (P) có véc tơ pháp tuyến: \(\overrightarrow{n_p}\)và qua điểm M

1(x-0)+0(y+1)+0(z-0) =0<=> x=0

đáp án B

3.

 \(f\left(x\right)=\dfrac{1}{256}\left(2x+3\right)^{10}=\dfrac{1}{256} \sum \limits_{k=0} ^{10}C_{k}^{10}(2x)^k.3^{10-k}\)

Để có hệ số x^8 thì k=8 khi đó hệ số của x^8 là:

\(\dfrac{1}{256}C_{8}^{10}.2^8.3^{10-8}=405\)

đáp án D

4.

pt <=>  \(\left(2.5\right)^{x^2-3}=10^{-2}.10^{3x-3}\)

\(\Leftrightarrow10^{x^2-3}=10^{3x-5}\)

\(\Leftrightarrow x^2-3=3x-5\Leftrightarrow x^2-3x+5=0\)

=> theo định lí viet tổng các nghiệm bằng 3, tích các nghiệm bằng 5

Đáp án A

NV
17 tháng 5 2020

4.

(P) nhận \(\left(2;-1;-1\right)\) là 1 vtpt

Phương trình (d) qua A và vuông góc (P): \(\left\{{}\begin{matrix}x=2+2t\\y=1-t\\z=4-t\end{matrix}\right.\)

Hình chiếu A' của A lên (P) là giao điểm d và (P) nên tọa độ thỏa mãn:

\(2\left(2+2t\right)-\left(1-t\right)-\left(4-t\right)+7=0\Rightarrow t=-1\)

\(\Rightarrow A'\left(0;2;5\right)\)

5.

Pt hoành độ giao điểm: \(lnx=0\Rightarrow x=1\)

Diện tích: \(S=\int\limits^e_1lnxdx-\int\limits^1_{\frac{1}{e}}lnxdx\)

Xét \(I=\int lnxdx\Rightarrow\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x.lnx-\int dx=xlnx-x\)

\(\Rightarrow S=\left(xlnx-x\right)|^e_1-\left(xlnx-x\right)|^1_{\frac{1}{e}}=1-\left(-1+\frac{2}{e}\right)=2-\frac{2}{e}\)

6.

Pt đường thẳng bị thiếu mẫu số đầu tiên

7.

Đề bài thiếu

NV
17 tháng 5 2020

1.

\(\left\{{}\begin{matrix}z_1+z_2=6\\z_1z_2=\left(3+2i\right)\left(3-2i\right)=13\end{matrix}\right.\)

\(\Rightarrow z_1;z_2\) là nghiệm của pt: \(z^2-6z+13=0\)

2.

\(\overrightarrow{BC}=\left(1;-2;-5\right)\)

Phương trình (P):

\(1\left(x-2\right)-2\left(y-1\right)-5\left(z+1\right)=0\)

\(\Leftrightarrow x-2y-5z-5=0\)

3.

\(I=\int\limits^0_{-1}x^2\left(x^2+2x+1\right)dx=\int\limits^0_{-1}\left(x^4+2x^3+x^2\right)dx=\left(\frac{1}{5}x^5+\frac{1}{2}x^4+\frac{1}{3}x^2\right)|^0_{-1}=\frac{1}{30}\)

8 tháng 4 2016


B C A D H K J S

Kẻ \(SH\perp AC\left(H\in AC\right)\)

Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)

\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)

\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)

Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)

Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)

Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)

\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)

Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)

23 tháng 5 2017

Gọi Q là mặt phẳng đi qua A và song song với (P) thì phương trình của (Q) là \(\left(x+2\right)+2\left(y+1\right)-\left(z-1\right)=0\) hay \(x+2y-z+5=0\). Gọi H là hình chiếu vuông góc của B lên (Q). Giả sử \(\Delta\) là đường thẳng qua A và song song với

Ôn tập cuối năm môn hình học 12

1trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng MN 2 Bốn điểm A,B,C,D sau đây đồng phẳng. chọn đáp án sai A (1;1;-2), B(0;1;-1),C(3;-1;-2)D(-1;0-1) B A(0;0;5),B(1;1;10), C(1;0;7), D(-4;1;0) C A(1;1;-3),B(1;0;-2) C(5;1;1),D(1;1;5) D A(1;1;-1),b(3;6;0),c(3;0;-2),d(0;3;0) 3 Trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;4;-2) và \(\overline{b}\) (1;1;0) \(\overline{c}\) (1;1;1). trong các mệnh đề sau,...
Đọc tiếp

1trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng MN

2 Bốn điểm A,B,C,D sau đây đồng phẳng. chọn đáp án sai

A (1;1;-2), B(0;1;-1),C(3;-1;-2)D(-1;0-1)

B A(0;0;5),B(1;1;10), C(1;0;7), D(-4;1;0)

C A(1;1;-3),B(1;0;-2) C(5;1;1),D(1;1;5)

D A(1;1;-1),b(3;6;0),c(3;0;-2),d(0;3;0)

3 Trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;4;-2) và \(\overline{b}\) (1;1;0) \(\overline{c}\) (1;1;1). trong các mệnh đề sau, mệnh đề nào sai

A/\(\overline{a}\)/=\(\sqrt{2}\) B\(\overline{a}\perp\overline{b}\) C /\(\overline{c}\)/=\(\sqrt{3}\) D\(\overline{b}\perp\overline{c}\)

4 trong ko gian oxyz, cho hai vecto \(\overline{a}\) (2;4;-2) và \(\overline{b}\) (1;-2;3). tích vô hướng của hai vecto a và b là

5 trong ko gain với hệ tọa độ oxyz cho \(\overline{a}\) (1;-2;3) và \(\overline{b}\) (2;-1;-1 . khẳng định nào sau đây đúng

A[\(\overline{a,}\overline{b}\)]=(-5;-7;-3) B veto \(\overline{a}\) ko cùng phương với vecto \(\overline{b}\)

C vecto \(\overline{a}\) ko vuông góc với vecto \(\overline{b}\) D/\(\overline{a}\)/=\(\sqrt{14}\)

6 trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;1;0) và \(^{\overline{b}}\)(1;1;0), \(\overline{c}\)(1;1;1. trong các mệnh đề sau mệnh đề nào sai

A/\(\overline{a}\) /=\(\sqrt{2}\) B/\(\overline{c}\)/=\(\sqrt{3}\)

C \(\overline{a}\perp\overline{b}\) D\(\overline{c}\perp\overline{b}\)

7 trong ko gian với hệ trục oxyz , mặt cầu tâm I(1;-2;3) , bán kính R =2 có pt là

8 mặt cầu tâm I(2;2;-2) bán kính R tiếp xúc với mp (P):2x-3y-z+5=0. bán kính R là

9 trong ko gian với hệ tọa độ oxyz , mặt cầu (S), tâm I(1;2;-3) và đi qua A(1;0;4) có pt là

10 trong ko gian với hệ trục tọa độ oxyz, cho hai điểm A(-1;2;1), B(0;2;3). viết pt mặt cầu có đường kính AB

11 trong ko gian với hệ trục oxyz cho hai điểm M(6;2;-5),N(-4;0;7). viết pt mặt cầu đường kính MN

12 tro ko gian với hệ trục oxyz, cho điểm I(0;-3;0). viết pt mặt cầu tâm I và tiếp xúc với mp(oxz)

13 trong ko gian oxyz cho điểm M(1;1;-2) và mặt phẳng \(\alpha\) :x-y-2z=3 . viết pt mặt cầu S có tâm M tiếp xúc với mp \(\alpha\)

14 viết pt mặt cầu (S) có tâm I(-1;2;1) và tiếp xúc với mp (P):x-2y-2z-2=0

5
13 tháng 5 2020

câu 5 ấy chắc thầy tui buồn ngủ nên quánh lộn chữ sai thành đúng r

NV
13 tháng 5 2020

12.

\(R=d\left(I;Oxz\right)=\left|y_I\right|=3\)

Phương trình:

\(x^2+\left(y+3\right)^2+z^2=9\)

\(\Leftrightarrow x^2+y^2+z^2+6y=0\)

13.

\(R=d\left(M;\alpha\right)=\frac{\left|1-1+2.2-3\right|}{\sqrt{1^2+1^2+2^2}}=\frac{1}{\sqrt{6}}\)

Pt mặt cầu:

\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=\frac{1}{6}\)

14.

\(R=d\left(I;\left(P\right)\right)=\frac{\left|-1-4-2-2\right|}{\sqrt{1^2+2^2+2^2}}=3\)

Phương trình:

\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2=9\)

\(\Leftrightarrow x^2+y^2+z^2+2x-4y-2z-3=0\)

9 tháng 4 2016

Khoảng cách từ A đến mặt phẳng (P) là : 

\(h=d_{\left(A,\left(P\right)\right)}=\frac{\left|1.2+\left(-2\right).\left(-2\right)+2.1+5\right|}{\sqrt{1^2+\left(-2\right)^2+2^2}}=4\)

Gọi r là bán kính của đường tròn thiết diện thì ta có \(2\pi r=6\pi\Rightarrow r=3\)

Gọi R là bán kính mặt cầu cần tìm, ta có : \(R^2=h^2+r^2=4^2+3^2=25\)

Vậy phương trình mặt cầu cần tìm là : \(\left(x-1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=25\)

NV
21 tháng 4 2020

Gọi mặt phẳng là (P) dễ kí hiệu

\(d\left(M;\left(P\right)\right)=\frac{\left|-6+2+2-7\right|}{\sqrt{2^2+2^2+1}}=\frac{9}{3}=3\)

Áp dụng định lý Pitago:

\(R=\sqrt{3^2+4^2}=5\)

Phương trình mặt cầu:

\(\left(x+3\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=25\)

\(\Leftrightarrow x^2+y^2+z^2+6x-2y-4z-11=0\)

27 tháng 4 2017

Hỏi đáp Toán

1 nghiệm của bất phuong trình \(3^{x-2}\le243\) là 2 rong ko gian Oxyz cho ba điểm A (2;1;-1), B(-1;0;4), C(0;-2;-1).Phương trình nào dưới đây là pt mp đi qua A và vuông góc vói đường thẳng BC A x-2y-5z+5=0 B x-2y-5z=0 C x-2y-5z-5=0 D 2x-y+5z-5=0 3 Cho hai điểm A(1;0;-3) và B (3;2;1). Phương trinh mặt cầu đường kính AB là 4 Trong ko gian Oxyz, cho đường thẳng d \(\left\{{}\begin{matrix}x=1-t\\y=2t\\z=1+t\end{matrix}\right.\) và mặt phẳng...
Đọc tiếp

1 nghiệm của bất phuong trình \(3^{x-2}\le243\)

2 rong ko gian Oxyz cho ba điểm A (2;1;-1), B(-1;0;4), C(0;-2;-1).Phương trình nào dưới đây là pt mp đi qua A và vuông góc vói đường thẳng BC

A x-2y-5z+5=0

B x-2y-5z=0

C x-2y-5z-5=0

D 2x-y+5z-5=0

3 Cho hai điểm A(1;0;-3) và B (3;2;1). Phương trinh mặt cầu đường kính AB là

4 Trong ko gian Oxyz, cho đường thẳng d \(\left\{{}\begin{matrix}x=1-t\\y=2t\\z=1+t\end{matrix}\right.\) và mặt phẳng (P) x+2y-2z+2. Tọa độ giao điểm của đường thẳng d và mặt phẳng (P) là

A (2;2;0)

B (0;-2;0)

C (0;2;0)

D (2;-2;0)

5 Từ thành phố A tới tp B có 3 con đường , từ tp B tới tp C có 4 con đường. Hỏi có bao nhiêu cách đi từ A tới C qua B

6 Tìm modun của số phức z thỏa mãn \(5\overline{z}-z\left(2-i\right)=2-6i\) với i là đơn vị ảo

7 Tìm phần ảo của số phức z , biết (1+i)z=3z-i

8 Tim các số thực x,y thỏa mãn 2x-1+(1-2y)i=2-x+(3y+2)i

9 ập hợp tấ cả các điểm biểu diễn các số phức z thỏa mãn \(/\overline{z}+2-i/=4\) là đường tròn tâm I và bán kính R lần lượt là

10 Trong ko gian Oxyz khoảng cách từ âm mặt cầu x^2 +y^2 +z^2 -2x-4y-4z+3=0 đến mặt phẳng \(\alpha\) :x+2y-2z-4=0 bằng

A.3

B.1

C.13/3

D 1/3

3
NV
27 tháng 7 2020

7.

\(\left(1+i\right)z=3z-i\Leftrightarrow\left(1+i-3\right)z=-i\)

\(\Leftrightarrow\left(i-2\right)z=-i\Rightarrow z=\frac{-i}{i-2}=-\frac{1}{5}+\frac{2}{5}i\)

Phần ảo là \(\frac{2}{5}\)

8.

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=2-x\\1-2y=3y+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-\frac{1}{5}\end{matrix}\right.\)

9.

\(\left|x-yi+2-i\right|=4\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y+1\right)^2=16\)

Đường tròn tâm \(I\left(-2;-1\right)\) bán kính \(R=4\)

10.

Mặt cầu tâm \(I\left(1;2;2\right)\)

Khoảng cách: \(d\left(I;\alpha\right)=\frac{\left|1+2.2-2.2-4\right|}{\sqrt{1^2+2^2+\left(-2\right)^2}}=1\)

NV
27 tháng 7 2020

4.

Giao điểm d và (P) thỏa mãn:

\(1-t+2.2t-2\left(1+t\right)+2=0\Rightarrow t=-1\)

Thay vào pt d ta được tọa độ: \(\left(2;-2;0\right)\)

5.

Theo quy tắc nhân ta có \(3.4=12\) cách

6.

\(z=x+yi\Rightarrow5\left(x-yi\right)-\left(x+yi\right)\left(2-i\right)=2-6i\)

\(\Leftrightarrow3x-y-\left(7y-x\right)i=2-6i\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-y=2\\-x+7y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

\(\Rightarrow z=1+i\Rightarrow\left|z\right|=2\)