Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp giải:
Vì điểm M thuộc d nên tham số hóa tọa độ điểm M, tính tổng M A 2 + M B 2 đưa về khảo sát hàm số để tìm giá trị nhỏ nhất
Lời giải:
Vì suy ra A M → = ( t - 2 ; 4 - 2 t ; 2 t ) B M → = ( t ; 2 - 2 t ; 2 t - 2 )
Khi đó
Dễ thấy
Vậy Tmin = 10. Dấu bằng xảy ra khi và chỉ khi t = 1 => M(2;0;5)
Đáp án B
Gọi A = ∆ ∩ P ; d = P ∩ Q
Lấy I ∈ ∆ ⇒ A ; I cố định, kẻ I H ⊥ P ; H K ⊥ d ⇒ P ; Q ^ = I K H ^ = φ
Do I A ≥ I K ⇒ sin φ = I H I K ≥ I H I A ⇒ φ m i n khi K ≡ A tức là I A ⊥ d ⇒ n Q → = u ∆ → ; u d →
Trong đó n ∆ ¯ = 1 ; - 2 ; - 2 ; u d ¯ = u ∆ ¯ ; u P ¯ = 3 ; 0 ; 3 = 3 1 ; 0 ; 1
Suy ra n Q ¯ = u ∆ ¯ ; u d ¯ = - 2 1 ; 1 ; - 1 , mặt khác (Q) chứa đường thẳng ∆ nên (Q) đi qua điểm (1;2;-1)
Do đó Q : x + y - z - 4 = 0 ⇒ A 4 ; 0 ; 0 , B ( 0 ; 4 ; 0 ) , C ( 0 ; 0 ; - 4 ) ⇒ V O . A B C = 64 6 = 32 3
Chọn A
Tìm giao điểm I từ hệ phương trình đường thẳng d và mặt phẳng (P). Viết phương trình đường thẳng IM. Gọi tọa độ điểm M theo tham số của đường thẳng IM rồi xác định tham số đó từ phương trình I M = 4 14
Đáp án A
Ta có A B → = 2 ; 1 ; 2 A C → = - 2 ; 2 ; 1 ⇒ A B → ; A C → = - 3 ; - 6 ; 6 ⇒ S ∆ A B C = 1 2 A B → , A C → = 9 2
Phương trình mặt phẳng (ABC) là - 3 x - 0 - 6 y - 1 + 6 z - 0 = 0 ⇔ x + 2 y - 2 z - 2 = 0
Điểm M ∈ d ⇒ M 2 t + 1 ; - t - 2 ; 2 t + 3 ⇒ d M , A B C = 4 t + 11 3 1
Lại có V M . A B C = 1 3 d M , A B C . S ∆ A B C ⇒ d M , A B C = 2 2
Từ (1) và (2) suy ra 4 t + 11 3 = 2 ⇔ 4 t + 11 = 6 ⇔ [ t = - 5 4 t = - 17 4 . Vậy [ M 1 - 15 2 ; 9 4 ; - 11 2 M 2 - 3 2 ; - 3 4 ; 1 2 .