Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-5\right)^2+\left(y+3\right)^2+\left(z-7\right)^2=4\)
b) \(\left(x-4\right)^2+\left(y+4\right)^2+\left(z-2\right)^2=36\)
c) \(\left(x-3\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=18\)
a) Phương trình đường thẳng d có dạng: , với t ∈ R.
b) Đường thẳng d vuông góc với mặt phẳng (α): x + y - z + 5 = 0 nên có vectơ chỉ phương
(1 ; 1 ; -1) vì là vectơ pháp tuyến của (α).
Do vậy phương trình tham số của d có dạng:
c) Vectơ (2 ; 3 ; 4) là vectơ chỉ phương của ∆. Vì d // ∆ nên cùng là vectơ chỉ phương của d. Phương trình tham số của d có dạng:
d) Đường thẳng d đi qua hai điểm P(1 ; 2 ; 3) và Q(5 ; 4 ; 4) có vectơ chỉ phương
(4 ; 2 ; -1) nên phương trình tham số có dạng:
Phương trình mặt cầu (S) cần tìm có dạng :
\(x^2+y^2+z^2-2ax-2by-2cz+d=0\)
Vì \(A\in\left(S\right)\) nên ta có : \(1-2a+d=0\left(1\right)\)
\(A\in\left(S\right)\) nên ta có : \(4+4b+d=0\left(2\right)\)