Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:(bz-cy)/a=(cx-az)/b=(ay-bx)/c
<=>(abz-acy)/a2=(bcx-abz)/b2=(acy-bcx)/c2
Theo t/c dãy tỉ số=nhau:
(abz-acy)/a2=(bcx-abz)/b2=(acy-bcx)/c2=(abz-acy+bcx-abz+acy-bcx)/a2+b2+c2=0/a2+b2+c2=0
Do đó: bz-cy=cx-az=ay-bx=0
*bz-cy=0<=>bz=cy<=>y/b=z/c(1)
*cx-az=0<=>cx=az<=>x/a=z/c(2)
*ay-bx=0<=>ay=bx<=>x/a=y/b(3)
Từ (1);(2);(3)=>x/a=y/b=z/c(đpcm)
Dạng này dễ
c nhân a vào tỉ số 1;nhân b vào t/s 2;nhân c vào t/s 3, áp dụng dtsbn là đc
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
ta có \(y=\frac{3\left(x+1\right)}{x-2}=3+\frac{9}{x-2}\) để các điểm trên C có tọa độ nguyên thì (x,y) nguyên
suy ra (x-2) là ước của 9
mà \(Ư\left\{9\right\}=\left\{\pm9;\pm3;\pm1\right\}\)
TH1: x-2=-9 suy ra x=-7 suy ra y=3-1=2
th2: x-2=9 suy ra x=11 suy ra y=3+1=4
th3:x-2=-3 suy ra x=-2 suy ra y=3-3=0
th4: x-2=3 suy ra x=5 suy ra y=3+3=6
th5:x-2=1 suy ra x=3 suy ra y=3+9=12
th6: x-2=-1 suy ra x=1 suy ra y=3-9=-6
kết luận....
Đáp án B
- Gọi vecto pháp tuyến của (P) là n → = a ; b ; c ≢ 0
- d ⊂ ( P ) ⇒ n → . u d → = 0 ⇔ a + b - c = 0 ⇒ c = a + b (1)
- Δ có vecto chỉ phương u ∆ → = 1 ; 2 ; 2 , góc giữa Δ và (P) là 30° nên
sin 30 ° = n → . u ∆ → n → . u ∆ → ⇔ 1 2 = a + b + 2 c a 2 + b 2 + c 2 . 1 2 + 1 2 + 4 (2)
Thế (1) vào (2) ⇒ 3 a + b 6 . 2 a 2 + 2 b 2 + 2 a b = 1 2
⇔ 4 . 9 a 2 + b 2 + 2 a b = 6 2 a 2 + 2 b 2 + 2 a b
⇔ 24 a 2 + 24 b 2 + 60 a b = 0 ⇔ a = - 1 2 b a = - 2 ⇔ b = - 2 a a = - 2 b
⇒ ( P ) : x - 2 y - z - 5 = 0 .
- Với b = - 2 a ⇒ c = a + b = - a . Chọn a = 1 ⇒ n → = 1 ; - 2 ; - 1
⇒ P : x - 2 y - z = 5
- Với a = - 2 b ⇒ c = - b . Chọn b = 1 ⇒ n → = - 2 ; 1 ; - 1
⇒ ( P ) : 2 x - y + z - 2 = 0
ta tính \(y'=6x^2+a-12\)
để hàm số vừa có cực đại và cực tiểu thì \(y'=0\) hai nghiệm phân biệt suy ra \(6x^2+a-12=0\Leftrightarrow6x^2=12-a\) (*)
để (*) có 2 nghiệm phân biệt thì \(12-a>0\Leftrightarrow a<12\)
vậy với a<12 thì hàm số có cực đại và cực tiểu
gọi \(x_1;x_2\) là cực đại và cực tiểu của hàm số
suy ra \(x_{1,2}=\pm\sqrt{\frac{12-a}{6}}\) ta thay vào hàm số suy ra đc \(y_{1,2}\) suy ra \(I\left(x_1;y_1\right);A\left(x_2;y_2\right)\)
sử dụng công thức tính khoảng cách
pt đường thẳng y có dạng x=0
ta có \(d\left(I;y\right)=\frac{\left|x_1\right|}{\sqrt{1}}\); \(d\left(A;y\right)=\frac{\left|x_2\right|}{\sqrt{1}}\)
\(d\left(I,y\right)=d\left(A,y\right)\) giải pt ta tìm ra đc a
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
Đáp án A
(bz-cy;cx-az;ay-bx)