Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp:
+) Phương trình đường thẳng đi điểm M ( x 0 ; y 0 ; z 0 ) và có VTPT n → = ( a ; b ; c ) có phương trình:
+) Hai vecto u → , v → cùng thuộc một mặt phẳng thì mặt phẳng đó có VTPT là: n → = u → , v →
Cách giải:
Mặt phẳng ( α ) chứa điểm M và trục Ox nên nhận n α → = O M → , u O x → là một VTPT.
Kết hợp với ( α ) đi qua điểm M(1;0;-1)
Giải:
a) Gọi (α) là mặt phẳng qua P và chứa trục Ox, thì (α) qua điểm O(0 ; 0 ; 0) và chứa giá của các vectơ (4 ; -1 ; 2) và ( 1 ; 0 ;0). Khi đó =(0 ; 2 ; 1) là vectơ pháp tuyến của (α).
Phương trình mặt phẳng (α) có dạng: 2y + z = 0.
b) Tương tự phần a) mặt phẳng (β) qua điểm Q(1 ; 4 ; -3) và chứa trục Oy thì (β) qua điểm O( 0 ; 0 ; 0) có (1 ; 4 ; -3) và (0 ; 1 ; 0) là cặp vectơ chỉ phương.
Phương trình mặt phẳng (β) có dạng : 3x + z = 0.
c) Mặt phẳng (ɣ) qua điểm R(3 ; -4 ; 7) và chứa trục Oz chứa giá của các vectơ
(3 ; -4 ; 7) và (0 ; 0 ; 1) nhận 2 vectơ này làm vectơ chỉ phương.
Phương trình mặt phẳng (ɣ) có dạng :4x + 3y = 0.
\(\overrightarrow{AB}=\left(-1;-2;1\right)\); \(\overrightarrow{n_{\alpha}}=\left(2;-1;2\right)\)\(\Rightarrow\overrightarrow{n_p}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(-3;4;5\right)\)
Phương trình mặt phẳng (P) : \(-3x+4y+5z=0\)
\(R=d\left(A;\left(\alpha\right)\right)=\frac{\left|6-1+2+1\right|}{\sqrt{9}}=\frac{8}{3}\)
Phương trình mặt cầu (S) : \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=\frac{64}{9}\)
Đáp án D
Ta có: OA → OB, OC => OA → (OBC) => OA → BC
Mặt khác vì AM → BC (M là trực tâm tam giác ABC) nên ta suy ra BC → (OAM) => BC → OM
Chứng minh tương tự ta được AC → OM. Do đó OM → (ABC). Ta chọn: n p → = OM → = (1; -2; 3)
Từ đó suy ra phương trình của mặt phẳng (P) là:
1(x - 1) - 2(y + 2) + 3(z - 3) = 0 ⇔ x - 2y + 3z - 14 = 0
Đáp án D
Ta có OA ⊥ OB, OC => OA ⊥ (OBC) => OA ⊥ BC.
Mặt khác ta có AM ⊥ BC nên ta suy ra BC ⊥ (OAM) => BC ⊥ OM
Chứng minh tương tự ta được AC ⊥ OM. Do đó OM ⊥ (ABC).
Ta chọn n P → = OM → = (1; 2; 2). Từ đó suy ra phương trình của mặt phẳng (P) là:
1(x - 1) + 2(y - 2) + 2(z - 2) = 0 <=> x + 2y + 2z - 9 = 0
Chọn D
Trục Ox nhận \(\overrightarrow{u}=\left(1;0;0\right)\) là 1 vtcp
\(\overrightarrow{OM}=\left(1;0;-1\right)\)
Đặt \(\overrightarrow{v}=\left[\overrightarrow{u};\overrightarrow{OM}\right]=\left(0;-1;0\right)=-1\left(0;1;0\right)\)
\(\Rightarrow\left(\alpha\right)\) nhận \(\left(0;1;0\right)\) là 1 vtpt
Phương trình \(\left(\alpha\right)\)
\(0\left(x-1\right)+1\left(y-0\right)+0\left(z+1\right)=0\Leftrightarrow y=0\)