Trong không gian Oxyz cho điểm M (2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

Chọn D

Xét tứ diện OABC có OA, OB, OC đôi một vuông góc nên nếu M là trực tâm tam giác ABC thì OM (ABC)

Khi đó phương trình mặt phẳng (ABC) là: 2 (x-2)+ (y-1)+5 (z-5) = 0 ó 2x + y + 5z – 30 = 0.

Vậy khoảng cách từ điểm I (1;2;3) đến mặt phẳng (P) là 

15 tháng 7 2017

Đáp án D

Kiến thức: Chóp tam giác có 3 cạnh bên đôi một vuông góc với nhau thì hình chiếu của đỉnh trên mặt đáy trùng với trực tâm của đáy.

Chóp O.ABC có các cạnh OA, OB, OC đôi một vuông góc với nhau, M(2;1;5) là trực tâm của tam giác ABC

vậy (P) nhận  O M → =(2;1;5) làm một vectơ pháp tuyến. 

=> Phương trình mặt phẳng (P) là: 2(x-2)+y-1+5(z-5)=0

<=> 2x+y+5z-30=0

 

28 tháng 2 2017

Đáp án B

Vì OA, OB, OC đôi một vuông góc và M là trực tâm  tam giác ABC => OM ⊥ (ABC)

Suy ra mp(ABC) nhận  O M →  làm véc tơ pháp tuyến và đi qua điểm M(1;2;3)

Vậy phương trình  mp(P): 

<=> x +2y+3z -14=0  

22 tháng 12 2018

Chọn B

Gọi A (a; 0; 0), B(0; b; 0) và C(0; 0; c) với abc ≠ 0. Phương trình mặt phẳng (P) đi qua ba điểm A, B, C 

.

Vì M(1;2;3) ∈ (P) nên ta có: .

Điểm M là trực tâm của tam giác ABC.


Phương trình mặt phẳng (P) là:  <=> x + 3y + 2z - 14 = 0

3 tháng 5 2019

Đáp án D

Ta có: OA → OB, OC => OA → (OBC) => OA → BC

Mặt khác vì AM → BC (M là trực tâm tam giác ABC) nên ta suy ra BC → (OAM) => BC → OM

Chứng minh tương tự ta được AC → OM. Do đó OM → (ABC). Ta chọn: n p → =  OM →  = (1; -2; 3)

Từ đó suy ra phương trình của mặt phẳng (P) là:

1(x - 1) - 2(y + 2) + 3(z - 3) = 0  x - 2y + 3z - 14 = 0

19 tháng 4 2018

Đáp án D

Ta có OA  OB, OC => OA  (OBC) => OA  BC.

Mặt khác ta có AM  BC nên ta suy ra BC  (OAM) => BC  OM

Chứng minh tương tự ta được AC  OM. Do đó OM  (ABC).

Ta chọn n P →   =   OM → = (1; 2; 2). Từ đó suy ra phương trình của mặt phẳng (P) là:

1(x - 1) + 2(y - 2) + 2(z - 2) = 0 <=> x + 2y + 2z - 9 = 0

Chọn D

19 tháng 7 2018

Đáp án C

Gọi A(a; 0; 0), B(0; b; 0), C(0; 0; c). Vì M(1;2;3) là trọng tâm của tam giác ABC nên ta có:

Vậy phương trình của mặt phẳng (P) là:  x 3 + y 6 + z 9 = 1

 

9 tháng 5 2018

Chọn C

27 tháng 3 2018

Đáp án A.

Gọi:

Phương trình mặt phẳng (P) có dạng:

Vì M là trực tâm của tam giác ABC nên

20 tháng 3 2017

Chọn A

Gọi A(a;0;0);B(0;b;0);C(0;0;c)

Phương trình mặt phẳng (P) có dạng:

Vì M là trực tâm của tam giác ABC nên:

Khi đó phương trình (P): 3x+2y+z-14=0.

Vậy mặt phẳng song song với (P) là: 3x+2y+z+14=0.