K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2023

Lời giải
Vì 3 điểm A, B, C thuộc các trục Ox, Oy, Oz nên ta giả sử tọa độ của ba điểm lần lượt là A(a;0;0), B (0;b;0), C (0;0;c)
Khi đó mặt phẳng (P) có dạng: \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
Ta có: 3OA = 2OB = OC khác 0 nên suy ra:

a, b, c khác 0

3 |a| = 2 |b| (1)

3 |a| = |c| (2)
Điểm M (-1;0;3) thuộc (P) nên ta có: \(\dfrac{-1}{a}+\dfrac{3}{c}=1\left(3\right)\) 
Từ (2)  suy ra c = 3a hoặc c = -3a. 
Thay c = 3a vào (3) ta có \(-\dfrac{1}{a}+\dfrac{1}{a}=1\)  ( vô nghiệm)
Thay c = -3a  vào (3) ta có \(-\dfrac{1}{a}-\dfrac{1}{a}=1\Leftrightarrow\dfrac{-2}{a}=1\Leftrightarrow a=-2\)

Suy ra c = 6, b = 3 hoặc c = 6, b = -3 
Vậy ta có hai phẳng (P) là: \(\dfrac{x}{-2}+\dfrac{y}{3}+\dfrac{z}{6}=1\) hoặc \(\dfrac{x}{-2}+\dfrac{y}{-3}+\dfrac{z}{6}=1\) .

5 tháng 7 2018

 Đáp án C

14 tháng 8 2019

Đáp án C

Cách giải:

Gọi tọa độ các giao điểm

Khi đó phương trình mặt phẳng (P) có dạng đoạn chắn

Vì OA=2OB=3OC>0 nên 

TH1: a=2b=3c

TH2: a=-2b=3c

TH3: a=2b=-3c

TH1: -a=2b=3c


Vậy, có 3 mặt phẳng (P) thỏa mãn yêu cầu đề bài.

25 tháng 2 2018

Chọn D

Giả sử A (a; 0; 0), B (0; b; 0), C (0; 0; c) với a, b, c > 0

Khi đó mặt phẳng (P) có dạng .

Vì (P) đi qua M nên

Mặt khác OA = 2OB nên a = 2b nên 

Thể tích khối tứ diện OABC : V= abc/6

Ta có:

3 tháng 5 2019

Đáp án D

Ta có: OA → OB, OC => OA → (OBC) => OA → BC

Mặt khác vì AM → BC (M là trực tâm tam giác ABC) nên ta suy ra BC → (OAM) => BC → OM

Chứng minh tương tự ta được AC → OM. Do đó OM → (ABC). Ta chọn: n p → =  OM →  = (1; -2; 3)

Từ đó suy ra phương trình của mặt phẳng (P) là:

1(x - 1) - 2(y + 2) + 3(z - 3) = 0  x - 2y + 3z - 14 = 0

19 tháng 4 2018

Đáp án D

Ta có OA  OB, OC => OA  (OBC) => OA  BC.

Mặt khác ta có AM  BC nên ta suy ra BC  (OAM) => BC  OM

Chứng minh tương tự ta được AC  OM. Do đó OM  (ABC).

Ta chọn n P →   =   OM → = (1; 2; 2). Từ đó suy ra phương trình của mặt phẳng (P) là:

1(x - 1) + 2(y - 2) + 2(z - 2) = 0 <=> x + 2y + 2z - 9 = 0

Chọn D

27 tháng 9 2017

Chọn D

Gọi A (a;0;0), B (0;b;0); C (0;0;c). Ta có OA = |a|; |OB| = b; |OC| = |c|.

Phương trình mặt phẳng đi qua ba điểm A, B, C là 

Theo giả thiết ta có điểm

Vì OA=OB=OC => |a| = |b| = |c| nên ta có hệ phương trình

Vậy có 3 mặt phẳng thỏa mãn.

12 tháng 4 2019

Đáp án D

Phương pháp

Gọi A(a;0;0), B(0;b;0), C(0;0;c)

Chia các trường hợp để phá trị  tuyệt đối và viết phương trình mặt phẳng (P) dạng đoạn chắn.

Cách giải: Giả sử A(a;0;0), B(0;b;0), C(0;0;c)

Vậy có 4 mặt phẳng thỏa mãn yêu cầu bài toán.

7 tháng 9 2019

Chọn D.

13 tháng 7 2017

Chọn D

Xét tứ diện OABC có OA, OB, OC đôi một vuông góc nên nếu M là trực tâm tam giác ABC thì OM (ABC)

Khi đó phương trình mặt phẳng (ABC) là: 2 (x-2)+ (y-1)+5 (z-5) = 0 ó 2x + y + 5z – 30 = 0.

Vậy khoảng cách từ điểm I (1;2;3) đến mặt phẳng (P) là